Презентация на тему "Движение частицы"

Презентация: Движение частицы
1 из 42
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
0.0
0 оценок

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Посмотреть презентацию на тему "Движение частицы" в режиме онлайн. Содержит 42 слайда. Самый большой каталог качественных презентаций по физике в рунете. Если не понравится материал, просто поставьте плохую оценку.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    42
  • Слова
    физика
  • Конспект
    Отсутствует

Содержание

  • Презентация: Движение частицы
    Слайд 1

    Краткий курс лекцийпо физике Кузнецов Сергей Иванович доцент к. ОФ ЕНМФ ТПУ Сегодня: понедельник, 31 октября 2016 г. pptcloud.ru

  • Слайд 2

    Тема 5. ДВИЖЕНИЕ ЧАСТИЦЫ В ОДНОМЕРНОЙ ПОТЕНЦИАЛЬНОЙ ЯМЕ 5.1. Движение свободной частицы 5.2. Частица в одномерной прямоугольной яме с бесконечными внешними «стенками» 5.3. Гармонический осциллятор х 5.4. Прохождение частиц сквозь потенциальный барьер. Туннельный эффект

  • Слайд 3

    5.1. Движение свободной частицы х Свободная частица – частица, движущаяся в отсутствие внешних полей. Т.к. на свободную частицу (пусть она движется вдоль оси x) силы не действуют, то потенциальная энергия частицы U(x)=const и ее можно принять равной нулю: (U=0) Тогда полная энергия частицы совпадает с ее кинетической энергией. В таком случае уравнение Шредингера для стационарных состояний примет вид (1)

  • Слайд 4

    х (1) Прямой подстановкой можно убедиться в том, что частным решением уравнения (1) является функция где A=const и k=const, с собственным значением энергии: (2)

  • Слайд 5

    х Из выражения (2) следует, что зависимость энергии от импульса оказывается обычной для нерелятивистских частиц: Следовательно, энергия свободной частицы может принимать любые значения (т.к. число может принимать любые значения), т.е. ее энергетический спектр является непрерывным.

  • Слайд 6

    х т.е. все положения свободной частицы являются равновероятностными. Таким образом, свободная частица описывается плоской монохроматической волной де Бройля. Этому способствует не зависящая от времени плотность вероятности обнаружения частицы в данной точке пространства.

  • Слайд 7

    Проведем качественный анализ решений уравнения Шредингера, применительно к частице в яме с бесконечно высокими «стенками». 5.2. Частица в одномерной прямоугольной яме с бесконечными внешними «стенками»

  • Слайд 8

    х Такая яма описывается потенциальной энергией вида где l– ширина «ямы», а энергия отсчитывается от ее дна.(для простоты принимая, что частица движется вдоль оси x)

  • Слайд 9

    х Рисунок 1

  • Слайд 10

    х Уравнение Шредингера для стационарных состояний в случае одномерной задачи запишется в виде: (5)

  • Слайд 11

    х По условию задачи (бесконечно высокие «стенки»), частица не проникает за пределы «ямы», поэтому вероятность ее обнаружения, (а следовательно, и волновая функция) за пределами «ямы» равна нулю. На границах ямы волновая функция также должна обращаться в нуль. Следовательно, граничные условия в таком случае имеют вид (6)

  • Слайд 12

    х В пределах «ямы» (0 ≤x≤l) уравнение Шредингера (5) сведется к уравнению (7) где Общее решение дифференциального уравнения (7) Уравнение Ψ(l) = Asin kl= 0 выполняется только при

  • Слайд 13

    х Отсюда следует, что: (11) где n = 1, 2, 3… Т.е. стационарное уравнение Шредингера описывающее движение частицы в «потенциальной яме» с бесконечно высокими «стенками», удовлетворяется только при собственных значениях En, зависящих от целого числа n. Следовательно, энергия En частицыв «потенциальной яме» с бесконечно высокими «стенками» принимает лишь определенные дискретные значения, т.е. квантуется.

  • Слайд 14

    х Квантовые значения энергии En называется уровнями энергии, а число п, определяющее энергетические уровни - главным квантовым числом. Таким образом, микрочастица в «потенциальной яме» с бесконечно высокими «стенками» может находиться только на определенном энергетическом уровнеEn, или как говорят, частица находится в квантовом состоянии п.

  • Слайд 15

    х Найдем собственные функции: Постоянную интегрирования А найдем из условия нормировки: В результате интегрирования получим Собственные функции будут иметь вид: где n = 1, 2, 3…

  • Слайд 16

    Графики собственных функцийсоответствующие уровням энергии при п = 1, 2, 3…

  • Слайд 17

    х Плотность вероятности |Ψ(x)|2обнаружения частицы на различных расстояниях от «стенок» ямы для п = 1, 2, 3 В квантовом состоянии с п = 2 частица не может находиться в центре ямы, в то время как одинаково может пребывать в ее левой и правой частях. Такое поведение частицы указывает на то, что представления о траекториях частицы в квантовой механике несостоятельны.

  • Слайд 18

    х Из выражения следует, что энергетический интервал между двумя соседними условиями равен Например, для электрона при размерах ямы l=10–10м (свободные электроны в металле) ΔEn ≈ 10–35nДж ≈ 10–16nЭв, т.е. энергетические уровни расположены столь тесно, что спектр можно считать практически непрерывным.

  • Слайд 19

    Если же размеры ямы соизмеримы с размерами стенки (l≈ 10–10 м), то для электрона ΔEn ≈ 10–17n Дж ≈ 10–2nЭв, т.е. получаются явно дискретные значения энергии (линейчатый спектр). Т.о., применение уравнения Шредингера к частице в «потенциальной яме» с бесконечно высокими “стенками” приводит к квантовым значениям энергии, в то время как классическая механика на энергию этой частицы лишних ограничений не накладывает. х

  • Слайд 20

    Кроме того, квантово-механическое рассмотрение этой задачи приводит к выводу, что частица в потенциальной яме с бесконечно высокими «стенками» не может иметь энергию, х меньшую, чем минимальная энергия равная (при n=1): Наличие отличной от нуля минимальной энергии не случайно и вытекает из соотношения неопределенностей. Докажем это:

  • Слайд 21

    х Неопределенность координаты Δx частицы в яме шириной l равнаΔx= l. Тогда согласно соотношению неопределенностей, импульс не может иметь точное, в данном случае, нулевое, значение. Неопределенность импульса: Такому разбросу значений импульса соответствует минимальная кинетическая энергия: Все остальные уровни имеют энергию, превышающую это значение

  • Слайд 22

    Из уравнений (5) и (11) следует, что при бoльших квантовых числах n>>1 х т.е. соседние уровни расположены тесно: тем теснее, чем больше п. Если п очень велико, то можно говорить о практически непрерывной последовательности уровней и характерная особенность квантовых процессов – дискретность – сглаживается. Этот результат является частным случаем принципа соответствия Бора (1923 г.) согласно которому законы квантовой механики должны при больших значениях квантовых чисел переходить в законы классической физики.

  • Слайд 23

    х Принцип соответствия: всякая новая, более общая теория, являющаяся развитием классической, не отвергает ее полностью, а включает в себя классическую теорию, указывая границы ее применимости, причем в определенных предельных условиях новая теория переходит в старую.

  • Слайд 24

    х 5.3. Гармонический осциллятор Гармоническим осциллятором называют частицу, совершающую одномерное движение под действием квазиупругой силы F=kx. Потенциальная энергия частицы . где или

  • Слайд 25

    (а) (б) . В точках с координатами –x0и +x0, полная энергия равна потенциальной энергии. Поэтому с классической точки зрения частица не может выйти за пределы области –x0и +x0 График потенциальной энергии частицы:

  • Слайд 26

    х Гармонический осциллятор в квантовой механике - квантовый осциллятор - описывается уравнением Шредингера: Значения полной энергии осциллятора где n = 0, 1, 2…

  • Слайд 27

    х Рисунок 3 ΔEn=ω и не зависит от n. называетсянулевой энергией, т.е. при Т = 0К колебания атомов в кристаллической решетке не прекращаются. Это означает что частица не может находиться на дне потенциальной ямы. Минимальная энергия

  • Слайд 28

    х В квантовой механике вычисляется вероятность различных переходов квантовой системы из одного состояния в другое. Для гармонического осциллятора возможны лишь переходы между соседними уровнями. Условия, накладываемые на изменения квантовых чисел при переходах системы из одного состояния в другое, называютсяправилами отбора:

  • Слайд 29

    х Плотность вероятности нахождения частицы |Ψ|2=Ψ∙Ψ* При n = 2 в середине ямы частицы быть не может.

  • Слайд 30

    х Таким образом, энергия гармонического осциллятора изменяется только порциями, т.е. квантуется Причем минимальная порция энергии (Вспомним тепловые излучения, где энергия излучается квантами). Кроме того например, при n = 2 в середине сосуда частицы быть не может. Это совершенно непонятно с классической точки зрения. Квантуется не только энергия, но и координата частицы!

  • Слайд 31

    Кроме того, квантово – механический расчет показывает, что частицу можно обнаружить и за пределами ямы, т.е. в области с координатами –x0и +x0, в то время как с классической точки зрения она не может выйти за пределы этой ямы.

  • Слайд 32

    х 5.4. Прохождение частиц сквозь потенциальный барьер. Туннельный эффект Рассмотрим простейший потенциальный барьер прямоугольной формы высоты Uи шириной l для одномерного (по оси х) движения частицы. Рисунок 5 При данных условиях задачи классическая частица,обладая энергией Е: либо беспрепятственно пройдет под барьером, либо отразится от него (E

  • Слайд 33

    х При E l, т.е. проникнет сквозь барьер. Такой вывод следует непосредственно из решения уравнения Шредингера, описывающего движение микрочастицы при данных условиях задачи. Для микрочастицы же, даже при E>U, имеется отличная от нуля возможность, что частица отразится от барьера и будет двигаться в обратную сторону.

  • Слайд 34

    х Уравнение Шредингера для состояний в каждой из выделенных областей имеет вид: Общее решение этих дифф. уравнений: Здесь q = iβ– мнимое число,

  • Слайд 35

    х Учитывая значение q и то, что А1 = 1, B3 = 0, получим решение уравнения Шредингера для трех областей в следующем виде: В области 2 функция уже не соответствует плоским волнам, распространяющимся в обе стороны, поскольку показатели степени не мнимые а действительные

  • Слайд 36

    х 1. В области 1 плоская волна де Бройля. 2. Волновая функция не равна нулю и внутри барьера,хотяуже не соответствует плоским волнам де Бройля 3. В области 3, если барьер не очень широк, будет опять иметь вид волн де Бройля с тем же импульсом, т.е. с той же частотой, но с меньшей амплитудой. Качественный анализ функций Ψ1(x), Ψ2(x), Ψ3(x) показан на рис.

  • Слайд 37

    Таким образом, квантовая механикаприводит к принципиально новому квантовому явлению - туннельному эффекту, в результате которого микрообъект может пройти через барьер.

  • Слайд 38

    х Коэффициент прозрачности для барьера прямоугольной формы Для барьера произвольной формы

  • Слайд 39

    х Прохождение частицы сквозь ,барьер можно пояснить соотношением неопределенностей: Неопределенность импульса на отрезке Δx = l составляет Связанная с этим разбросом в значении импульса может оказаться достаточной для того, чтобы полная энергия оказалась больше потенциальной. кинетическая энергия

  • Слайд 40

    С классической точки зрения прохождение частицы сквозь потенциальный барьер при E

  • Слайд 41

    Основы теории туннельных переходов заложены работами советских ученых Л.И. Мандельштама и М.А. Леонтовича в 1928 г. Туннельное прохождение сквозь потенциальный барьер лежит в основе многих явлений: физики твердого тела (например, явления в контактном слое на границе двух полупроводников), атомной и ядерной физики (например, α-распад, протекание термоядерных реакций).

  • Слайд 42

    Лекция окончена!!!

Посмотреть все слайды

Сообщить об ошибке