Презентация на тему "Постоянный ток"

Презентация: Постоянный ток
Включить эффекты
1 из 25
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
5.0
2 оценки

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Презентация на тему "Постоянный ток" по физике. Состоит из 25 слайдов. Размер файла 0.48 Мб. Каталог презентаций в формате powerpoint. Можно бесплатно скачать материал к себе на компьютер или смотреть его онлайн с анимацией.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    25
  • Слова
    физика
  • Конспект
    Отсутствует

Содержание

  • Презентация: Постоянный ток
    Слайд 1

    Электрический ток

    Работа выполнена Ученицей МОУСОШ №63 Матвеевой Татьяной pptcloud.ru

  • Слайд 2

    Электрическим током называется упорядоченное движение заряженных частиц.Чтобы получить электрический ток в проводнике, надо создать в нем электрическое поле . Под действием этого поля заряженные частицы, которые могут свободно перемещаться в этом проводнике ,придут в движение в направлении действия на них электрических сил. Возникает электрический ток.Чтобы электрический ток в проводнике существовал длительное время ,необходимо все это время поддерживать в нем электрическое поле. Электрическое поле в проводниках создается и может длительное время поддерживаться источниками электрического тока.

    -

  • Слайд 3

    Полюса источника тока

    Источники тока бывают различные, но во всяком из них совершается работа по разделению положительно и отрицательно заряженных частиц. Разделенные частицы накапливаются на полюсах источника тока. Так называют места ,к которым с помощью клемм или зажимов подсоединяют проводники. Один полюс источника тока заряжается положительно, а другой –отрицательно.

  • Слайд 4

    Источники тока

    В источниках тока в процессе работы по разделению заряженных частиц происходит превращение механической работы в электрическую. Так например в электрофорной машине(см. рис.) в электрическую энергию превращается механическая энергия

  • Слайд 5

    Электрическая цепь и ее составные части

    Для того чтобы использовать энергию электрического тока, нужно прежде всего иметьисточник тока. Электродвигатели, лампы, плитки, всевозможные электробытовые приборы называютприемниками илипотребителями электрической энергии.

  • Слайд 6

    Условные обозначения, применяемые на схемах

    Электрическую энергию нужно доставить к приемнику. Для этого приемник соединяют с источником электрической энергии проводами. Чтобы включать и выключать в нужное время приемники, применяют ключи, рубильники, кнопки, выключатели. Источник тока, приемники, замыкающие устройства ,соединенные между собой проводами, составляют простейшую электрическую цепь Чтобы в цепи был ток ,она должна быть замкнутой.Если в каком – нибудь месте провод оборвется ,то ток в цепи прекратится.

  • Слайд 7

    Схемы

    Чертежи, на которых изображены способы соединения электрических приборов в цепь, называют схемами. На рисунке а) изображен пример электрической цепи.

  • Слайд 8

    Электрический ток в металлах

    Электрический ток в металлах представляет собой упорядоченное движение свободных электронов. Доказательством того, что ток в металлах обусловлен электронами ,явились опыты физиков из нашей страны Л.И . Мендельштама и Н.Д. Папалекси(см.рис.), а так же американских физиков Б. Стюарта и РобертаТолмена.

  • Слайд 9

    Узлы кристаллической решетки металла

    В узлах кристаллической решетки металла расположены положительные ионы, а в пространстве межлу ними движутся свободные электроны, т . е . Не связанные с ядрами своих атомов (см. рис.). Отрицательный заряд всех свободных электронов по абсолютному значению равен положительному заряду всех ионов решетки. Поэтому в обычных условиях металл электрически нейтрален.

  • Слайд 10

    Движение электронов

    Когда в металле создается электрическое поле , оно действует на электроны с некоторой силой и сообщает ускорение в направлении, противоположном направлению вектора напряженности поля. Поэтому в электрическом поле беспорядочно движущиеся электроны смещаются в одном направлении, т.е. движутся упорядоченно.

  • Слайд 11

    Движение электронов частично напоминает дрейф льдин во время ледохода…

    ,когда они ,двигаясь беспорядочно и сталкиваясь друг с другом, дрейфуют по течению реки. Упорядоченное перемещение электронов проводимости и представляет собой электрический ток в металлах.

  • Слайд 12

    Действие электрического тока.

    О наличии электрического тока в цепи мы можем судить лишь по различным явлениям, которые вызывает электрический ток. Такие явления называют действиямитока. Некоторые из этих действий легко наблюдать на опыте.

  • Слайд 13

    Тепловое действие тока…

    …можно наблюдать , например, присоеденив к полюсам источника тока железную или никелиновую проволоку. Проволока при этом нагревается и, удлинившись, слегка провисает. Ее даже можно раскалить докрасна. В электрических лампах, например, тонкая вольфрамовая проволочка нагревается током да яркого свечения

  • Слайд 14

    Химическое действие тока…

    … состоит в том, что в некоторых растворах кислот при прохождении через них электрического тока наблюдается выделение веществ. Вещества ,содержащиеся в растворе ,откладываются на электродах, опущенных в этот раствор. Например ,при пропускании тока через раствор медного купороса на отрицательно заряженном электроде выделится чистая медь. Это используют для получения чистых металлов.

  • Слайд 15

    Магнитное действие тока …

    … также можно наблюдать на опыте. Для этого медный провод , покрытый изоляционными материалом, нужно намотать на железный гвоздь, а концы провода соединить с источником тока. Когда цепь замкнута ,гвоздь становится магнитом и притягивает небольшие железные предметы: гвозди, железные стружки, опилки. С исчезновением тока в обмотке гвоздь размагничивается.

  • Слайд 16

    Рассмотрим теперь взаимодействие между проводником с током и магнитом.

    На рисунке изображена висящая на нитях небольшая рамочка, на которую навито несколько витков тонкой медной проволоки. Концы обмотки присоединены к полюсам источника тока. Следовательно , в обмотке существует электрический ток, но рамка висит неподвижно. Если рамку поместить теперь между полюсами магнита , то она станет поворачиваться.

  • Слайд 17

    Направление электрического тока.

    Так как в большинстве случаев мы имеем дело с электрическим током в металлах, то за направление тока в цепи разумно было бы принять направление движения электронов в электрическом поле, т.е. считать, что ток направлен от отрицательного полюса источника к положительному. За направление тока условно приняли то направление , по которому движутся в проводнике положительные заряды, т.е. направление от положительного полюса источника тока к отрицательному. Это учтено во всех правилах и законах электрического тока.

  • Слайд 18

    Сила тока .Единицы силы тока.

    Электрический заряд ,проходящий через поперечное сечение проводника в 1с, определяет силу тока в цепи. Значит, сила тока равна отношению электрического зарядаq, прошедшего через поперечное сечение проводника, ко времени его прохожденияt. Где I–сила тока.

  • Слайд 19

    Опыт по взаимодействию двух проводников с током.

    На Международной конференции по мерам и весам в 1948 году было решено в основу определения единицы силы тока положить явление взаимодействия двух проводников с током. Ознакомимся сначала с этим явлением на опыте…

  • Слайд 20

    Опыт

    На рисунке изображены два гибких прямых проводника, расположенных параллельно друг другу. Оба проводника подсоединены к источнику тока. При замыкании цепи по проводникам протекает ток, вследствие чего они взаимодействуют –притягиваются или отталкиваются ,в зависимости от направления токов в них. Силу взаимодействия проводников с током можно измерить, она зависит от длины проводника, расстояния между ними, среды, в которой находятся проводники, от силы тока в проводниках.

  • Слайд 21

    Единицы силы тока.

    За единицу силы тока принимают силу тока, при которой отрезки таких параллельных проводников длиной 1м взаимодействуют с силой 0,0000002 Н. Эту единицу силы тока называют ампером(А) .Так как она названа в честь французского ученого Андре Ампера.

  • Слайд 22

    Применяют так же дольные и кратные единицы силы тока…:

    Миллиампер(мА) Микроампер(мкА) Килоампер (кА) 1мА=0,001 А 1мкА=0,000001А 1кА=1000 А В осветительных лампах ,используемых в наших квартирах, сила тока составляет от 7 до 400мА. Т.к.q=It , полагая что I=1А,t=1с,получим единицу электрического заряда: 1 Кл = 1 А * 1 с

  • Слайд 23

    Амперметр. Измерение силы тока.

    Силу тока в цепи измеряют прибором ,называемым амперметром. Амперметр- это тот же гальванометр, только приспособленный для измерения силы тока, его шкала проградуирована в амперах. На шкале амперметра обычно ставят букву А.

  • Слайд 24

    Включение амперметра в электрическую цепь.

    При измерении силы тока амперметр включают в цепь последовательно с тем прибором , силу тока в котором измеряют. В цепи ,состоящей из источника тока и ряда проводников ,соединенных так, что конец одного проводника соединяется с началом другого ,сила тока во всех участках одинакова.

  • Слайд 25

    Сила тока- очень важная характеристика электрической цепи. Работающим с электрическими цепями надо знать, что для человеческого организма безопасной считается сила тока до1 Ма. Сила тока бльше100 Ма приводит к серьезным поражениям организма.

Посмотреть все слайды

Сообщить об ошибке