Презентация на тему "Вторичные энергетические ресурсы"

Презентация: Вторичные энергетические ресурсы
Включить эффекты
1 из 53
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
4.0
6 оценок

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Посмотреть и скачать презентацию по теме "Вторичные энергетические ресурсы" по географии, включающую в себя 53 слайда. Скачать файл презентации 1.3 Мб. Средняя оценка: 4.0 балла из 5. Для учеников 10-11 класса. Большой выбор учебных powerpoint презентаций по географии

Содержание

  • Презентация: Вторичные энергетические ресурсы
    Слайд 1

    Вторичные энергетические ресурсы

    Ершова Е.В.

  • Слайд 2

    В конце занятия вы должны знать:

    Определение понятия «вторичные энергетические ресурсы» Виды ВЭР Основные направления использования ВЭР потребителями Пути использования ВЭР в промышленности

  • Слайд 3

    Понятие «энергетические отходы производства» включает все потери в энергоиспользующих агрегатах, а также энергетический потенциал готовой продукции.

  • Слайд 4

    Вторичные энергетические ресурсы - это энергетический потенциал продукции, отходов, побочных и промежуточных продуктов, образующихся в технологических агрегатах (установках), который не используется в самом агрегате, но может быть частично или полностью использован для энергоснабжения других потребителей.

  • Слайд 5
  • Слайд 6

    Теплота уносится также с вентиляционным воздухом, с канализационными и бытовыми стоками. Согласно расчетам, из 1,7 млрд. т у. т., расходуемого в стране за год, полезно используется примерно 700 млн. т. у. т. Утилизация ВЭР позволит получить большую экономию топлива и существенно уменьшить капитальные затраты на создание соответствующих энергоснабжающих установок, так как при одинаковом эффекте затраты на улучшение использования энергоресурсов в 1,5-2 раза ниже затрат на добычу топлива.

  • Слайд 7

    Энергетические отходы можно разделить на два рода:

    Первый род Второй род недоиспользованный энергетический потенциал первичного энергоресурса — продукты неполного сгорания топлива, тепло дымовых газов, «мятый» пар из паротурбоприводов, тепло конденсата, сбросных вод и т.п проявления физико-химических свойств материалов в ходе их обработки — горючие газы доменных, фосфорных и других печей, тепло готовой продукции, теплота экзотермических реакций, избыточное давление жидкостей и газов, возникающее по условию протекания технологического процесса и т.п.

  • Слайд 8

    ВЭР первого рода следует стремиться устранить или снизить их выход, и только тогда, когда все подобные меры приняты, использовать. ВЭР второго рода побочный результат технологии, поэтому необходимо либо создать на их базе комбинированный энерготехнологический агрегат с выработкой одновременно энергетической и неэнергетической продукции, либо утилизировать иным путем при помощи специального утилизационного оборудования.

  • Слайд 9

    Классификация вторичных энергетических ресурсов промышленности

    1. Горючие 2. Тепловые 3. Избыточного давления

  • Слайд 10

    1. Горючие (топливные) ВЭР– химическая энергия отходов технологических процессов химической и термохимической переработки сырья, а именно это: – побочные горючие газы плавильных печей (доменный газ). Их энергетический потенциал определяется теплотой сгорания.

  • Слайд 11

    – горючие отходы процессов химической и термохимической переработки углеродистого сырья (синтез, отходы электродного производства, горючие газы при получении исходного сырья для пластмасс, каучука и т.д.)

  • Слайд 12

    – твёрдые и жидкие топливные отходы, не используемые (не пригодные) для дальнейшего технологической переработки

  • Слайд 13

    – отходы деревообработки, щелок целлюлозно-бумажного производства.

  • Слайд 14

    2. Тепловые ВЭР – это тепло отходящих газов при сжигании топлива, тепло воды или воздуха, использованных для охлаждения технологических агрегатов и установок, теплоотходов производства, например, горячих металлургических шлаков. Энергетический потенциал определяется теплосодержанием теплоносителей.

  • Слайд 15

    Одним из весьма перспективных направлений использования тепла слабо нагретых вод является применение так называемых тепловых насосов, работающих по тому же принципу, что и компрессорный агрегат в домашнем холодильнике. Тепловой насос отбирает тепло от сбросной воды и аккумулирует тепловую энергию при температуре около 90 °С, иными словами, эта энергия становится пригодной для использования в системах отопления и вентиляции.

  • Слайд 16

    3. ВЭР избыточного давления (напора) – это потенциальная энергия газов, жидкостей и сыпучих тел, покидающих технологические агрегаты с избыточным давлением (напором), которое необходимо снижать перед последующей ступенью использования или при выбросе их в окружающую среду. Энергетический потенциал определяется давлением для энергоносителей – жидкостей; давлением и температурой, определяющих возможную работу изоэнтропного расширения для газов и паров.

  • Слайд 17

    Примером применения этих ресурсов может служить использование избыточного давления доменного газа в утилизационных бескомпрессорных турбинах для выработки электрической энергии.

  • Слайд 18

    Для количественной оценки вторичных энергоресурсов обычно рассматривается несколько значений:

    выход — количество ВЭР, образующихся в процессе производства в данном технологическом агрегате за единицу времени; выработка энергии за счет ВЭР — количество тепла, холода, механической работы или электроэнергии, получаемое в утилизационных установках. При этом различаются:

  • Слайд 19

    возможная выработка — максимальное количество тепла, холода, механической работы или электроэнергии, которое может быть практически получено за счет данного вида ВЭР с учетом режимов работы агрегата — источника ВЭР и КПД утилизационной установки; экономически целесообразная выработка — максимальное количество тепла, холода, механической работы или электроэнергии, целесообразность получения которого в утилизационной установке подтверждается экономическими расчетами с учетом энергоэкономического эффекта у потребителя;

  • Слайд 20

    фактическая выработка — фактически полученное количество тепла, холода, механической работы или электроэнергии на действующих утилизационных установках.

  • Слайд 21

    Теплота охлаждающей воды: В установках испарительного охлаждения выход пара 0,1 т/т чугуна и 0,2 т/т мартеновской стали. Все технологические вопросы испарительного охлаждения печей решены и требуется максимально широкое внедрения способа в производство. Необходимо улучшить технические решения по унификации охлаждаемых элементов, повышению давления пара, улучшить контроль за плотностью схем охлаждения, усовершенствовать автоматику утилизирующих установок. Необходимо распространение опыта чёрной металлургии в химическую промышленность, машиностроение и т. д.

  • Слайд 22

    ВЭР имеются также на электрических станциях и представляют собой тепловые отходы или потери тепла, получаемые в процессе энергопроизводства. На гидроэлектростанциях такими тепловыми отходами являются только тепловыделения в гидрогенераторах станциях.

  • Слайд 23

    Основные направления использования потребителями ВЭР: - топливное– непосредственное использование горючих ВЭР в качестве топлива; - тепловое – использование тепла, получаемого непосредственно в качестве тепла или вырабатываемого за счет горючих ВЭР в утилизационных установках;

  • Слайд 24

    - силовое (механическое) – использование механической энергии, получаемой в силовых установках за счет тепловых или горючих ВЭР; -комбинированное- тепловая и электрическая (механическая) энергия, одновременно вырабатываемые из ВЭР в утилизационных установках.

  • Слайд 25

    Использование вторичных энергетических ресурсов в промышленности Подобные энергетические ресурсы можно использовать для удовлетворения потребностей в топливе и энергии либо непосредственно (без изменения вида энергоносителя), либо путём выработки тепла, электроэнергии, холода и механической энергии в утилизационных установках. Большинство горючих ВЭР употребляются непосредственно в виде топлива, однако некоторые из них требуют специальных утилизационных установок. Непосредственно применяются также некоторые тепловые ВЭР (например, горячая вода систем охлаждения для отопления).

  • Слайд 26

    Д Е О Н В Е О В О Л Е Ы В Е И Ч Ю Р К О М Б И Н И Р О В А Н Н О Е Г Л П Е Т С Л П О Т Х Ы В 1 2 5 4 3 6 Одно из направлений в котором, тепловая и электрическая энергия, одновременно вырабатывается из ВЭР в утилизационных установках. Оценка ВЭР, характеризующая количество ВЭР, образующихся в процессе производства в данном технологическом агрегате за единицу времени. Направление, в котором горючие ВЭР используются непосредственно в виде топлива. Направление, в котором используется механическая энергия, полученная в силовой установке за счет тепловых или горючих ВЭР. Энергетические ресурсы, которые используют тепло отходящих газов при сжигании топлива Энергетические ресурсы, использующие химическую энергию отходов технологических процессов химический и термохимической переработки сырья.

  • Слайд 27

    Оценка доли вторичного сырья в производстве важнейших видов промышленной продукции

  • Слайд 28

    Источники и пути использования ВЭР в черной металлургии

    Горючие газы – отходы основного производства. Доменный и коксовый газы практически используются полностью. Использование ферросплавного газа возможно для технологических (подогрев материалов, частичное предварительное восстановление сырья) и теплофикационных целей, сжиганием в котельной. Конвертерный газ частично используют в охладителях, но полное использование его ещё не решено.

  • Слайд 29

    Теплота продуктов сгорания печей:

    У мартеновских печей теплота продуктов сгорания равна 12,5 ГДж/т стали, у нагревательных печей 0,8 ГДж/т проката. Использование этой теплоты возможно в котлах-утилизаторах при условии оснащения их виброочисткой, дробеочисткой. Возможно использование этой теплоты для нагрева шахты в шахтных подогревателях.

  • Слайд 30

    Теплота материалов: Потери составляют: 1 ГДж/т жидкого чугуна, 1,2ГДж/т жидкой стали, 0,8 ГДж/т жидкого шлака, 12 ГДж/т кокса, 0,6 ГДж/т агломерата. Решено только использование теплоты кокса. В установках сухого тушения получают 0,3 – 0,4 т пара/т кокса. Использование теплоты чугуна, стали, шлака не налажено. Использование теплоты агломерата повторным использованием охлаждающего воздуха для нагрева шихты на 25-30 % снижает содержание углерода в шихте, что выгодно для основного технологического процесса. Использование теплоты шлака возможно при создании новых типов грануляторов.

  • Слайд 31

    Источники и пути использования ВЭР в цветной металлургии

    Большие резервы по эффективному использованию ВЭР имеются и на предприятиях цветной металлургии. Эффективным в цветной металлургии является использование тепла уходящих дымовых газов для подогрева воздуха, поступающего в печи для сжигания топлива. Это экономит топливо, улучшает процесс его горения и, кроме того, повышает производительность печи. Однако с дымовыми газами уносится ещё значительное количество тепловой энергии, которая может использоваться в котлах-утилизаторах для выработки пара.

  • Слайд 32

    Автомобильные шины как топливо

  • Слайд 33

    Резиновая крошка как топливный материал используется в виде 10%-ной добавки при сжигании угля. В США проводится эксперимент по сжиганию резины крупного дробления (до 25 мм) в циклонных топках энергетических котлов. Доля резины составляет 2-3% от массы угольного топлива. В Германии ежегодно из 400 тыс. т изношенных шин сжигается в обжиговых печах 170 тыс. т. Сложность процесса дробления изношенных шин (особенно с металлокордом) стимулировала развитие технологии сжигания шин в цельном виде. В Англии фирма «Avon Rubber» с 1973 г. эксплуатирует печи для сжигания шин в цельном виде, т. е. имеет уже почти 30-летний опыт в этой области.

  • Слайд 34

    В Италии проведены опыты на экспериментальной установке по сжиганию шин в цельном виде. Фирмой «Del Monego» сооружена установка с вращающейся печью, которая позволяет загружать шины диаметром до 120 см и массой 70 кг. В США развивается строительство электростанций, использующих в качестве топлива только автомобильные шины. Фирма «Oxford Energy» построила и эксплуатирует в г. Модесто электростанцию мощностью 14 МВт для сжигания 50 тыс. т шин в цельном виде. На основании успешного опыта сжигания шин в США планируется построить 12 таких электростанций. В Великобритании рассматривается вопрос строительства электростанций мощностью 20-30 МВт для сжигания 12 млн. шин в год массой 90 тыс. т.

  • Слайд 35

    В настоящее время фирмой «Firestone Tyres» в США проведены успешные опыты по трансформированию резины в метанол с получением пылевидной сажи, соответствующей стандарту для резинотехнического производства. Первая установка имеет производительность по метанолу 300 т/сутки. Установка рассчитана на переработку шин легковых автомобилей диаметром 50 см. Основным процессом деструкции резины для дальнейшего трансформирования продуктов разложения в метанол является пиролиз в окислительной камере при температуре 1000 °С. Для переработки шин необходимо их разрезать на части с отделением борта, который используется как побочный товарный продукт.

  • Слайд 36

    Первый вариант

    применение остаточно крупных установок для сжигания. По этому пути идут в США, Великобритании, Италии. Так, две установки в Великобритании (сооружение первой из которых ведется с участием США) могут обеспечить утилизацию 50% шин в стране. Создание крупных установок технически более целесообразно и в наших условиях. Из освоенного промышленного оборудования можно подобрать печи, котлы-утилизаторы, газовые фильтры. Но подобный подход требует организации сбора и доставки шин, т.е. дополнительного транспортного звена в технологии.

  • Слайд 37

    Второй вариант

    создание небольших установок, отвечающих современным экологическим требованиям. Малые установки по сжиганию шин могут сооружаться в составе автотранспортных предприятий как надстройки котельных, которые, как правило, имеются на этих предприятиях.

  • Слайд 38

    Русский реактор

    В ходе экспериментального запуска "Русского реактора" было уничтожено 80 тонн бывших в употреблении автошин. В «сухом осадке» оказалось 10 тонн искусственной нефти, которая после элементарной перегонки превратилась в первоклассное дизельное топливо, а также - 40 тонн высокодисперсной сажи, очень необходимой для производства красителей. Этот результат специалисты без натяжек назвали ошеломляющим.

  • Слайд 39

    Общие принципы: исходное сырье разлагается при высоких «металлургических» температурах, поддерживаемых специальными катализаторами, и в процессе достигнутой реакции пиролиза.

  • Слайд 40

    Промышленная установока по переработке автопокрышек имеет расчетную мощность 5000 тонн сухого сырья в год (330 рабочих суток). Суточная производительность - 15,2 тонны. За сутки предусмотрена выработка 6,4 тонны жидкого топлива, 4,56 тонны обуглероженного остатка (в том числе сажи), 1,52 тонны переплавленного металлокорда, десятки кубометров газа.

  • Слайд 41

    При этом часть пиролизного газа используется сразу на поддержание технологического процесса (от 30 до 50 процентов). Оставшийся газ можно накапливать в специальных емкостях и использовать в дальнейшем как бесплатное топливо.

  • Слайд 42

    В ином случае газ просто сжигается в факеле. Часть обуглероженного остатка (4,56 тонны) в дальнейшем может найти применение в качестве сорбента (активированного угля), в производстве высокочистого углерода, сырья для заводов резинотехнического профиля, пигмента для лаков и красок. Высококачественный металл, полученный из металлокорда, также найдет себе применение. До начала пиролиза покрышки подлежат предварительной разделке.

  • Слайд 43

    Вторичное использование ртутных ламп

    Ртутные лампы стекло металлические цоколи ртутьсодержащий люминофор Используется как вторичное сырье Сырье для получения ртути на специализированных предприятиях

  • Слайд 44

    Вторичное использование стекла

    Стеклобой тарного и строительного стекла, бой кинескопов, отходы специальных стекол, бытовые отходы стекла (бутылки, банки и т.д.), жидкое стекло переработка гранулированное теплоизоляционное пеностекло особо легкий заполнитель для производства строительных блоков теплоизоляционной засыпки теплоизолирующие плиты

  • Слайд 45

    Теплоизоляционная засыпка применяется: в строительной индустрии в промышленном оборудовании в установках глубокого и умеренного холода на теплотрассах в теплоизоляционных оболочка Свойства: Особо низкая плотность Высокая тепло- и звукоизоляция Негорючесть

  • Слайд 46

    Теплоизолирующие плиты

    Сырье: текстильные отходы из натуральных, искусственных и синтетических волокон (отходы производства хлопка, льна, шерсти, содержимое пыльных камер текстильных производств, отходы трикотажной и швейной промышленности и др.), макулатуру, неорганическое связующие. Применение: для утепления ограждающих конструкций и устройства звукоизоляционных прокладок или слоев в полах при строительстве. Из макулатуры и отходов ламинированной бумаги производят экологически чистые полимерно-бумажные плиты, которые используются для внутренней облицовки производственных и жилых помещений.

  • Слайд 47

    Эковата

    представляет собой рыхлый, очень легкий теплоизоляционный материал, состоящий на 81% из вторичной целлюлозы и на 19% из нелетучих антипиренов и антисептиков. не содержит вредных для здоровья веществ, является экологически безопасным; обладает высокой теплоизолирующей способностью; предотвращает образование конденсата; обладает высокими звукоизоляционными свойствами; эффективная защита конструкций от гниения, останавливает уже начавшийся рост грибков, предотвращает появление грызунов и насекомых; монолитность теплоизоляционного слоя; позволяет зданию "дышать" - по принципу деревянного дома (пароизоляция не требуется).

  • Слайд 48

    Вторичное использование бетона и железобетона

    бетонные и железобетонные изделия Строительный щебень Арматурная сталь обустройство щебёночных оснований под полы и фундаменты зданий; под асфальтобетонные покрытия дорог; при отсыпке временных дорог; при подсыпке под все виды тротуарных дорожек; при подсыпке под автостоянки и асфальтированные площадки

  • Слайд 49

    Повышение уровня утилизации вторичных энергетических ресурсов обеспечивает: - экономию топлива - экономию капитальных вложений - предотвращает загрязнения окружающей среды - снижение себестоимости продукции нефтеперерабатывающих и нефтехимических предприятий

  • Слайд 50

    Контроль

    1. Что включает в себя понятие «энергетические отходы производства»? 2. Дайте определение вторичным энергетическим ресурсам. 3. Какие энергетические отходы можно отнести к первому роду, а какие ко второму? 4. По видам энергетического потенциала ВЭР подразделяются на 3 группы. Какие? Дайте характеристику каждой из них.

  • Слайд 51

    5. Какие значения рассматриваются для количественной оценки ВЭР? Дайте определение каждому из них. 6. Перечислите основные направления использования ВЭР потребителями. 7. Источники и пути использования ВЭР в черной промышленности.

  • Слайд 52

    8. Источники и пути использования ВЭР в цветной металлургии. 9. Укажите два варианта решения вопроса сжигания шин. 10. Каковы общие принципы «Русского реактора»? 11. Какие материалы получают в результате вторичного использования стекла?

  • Слайд 53

    Найдите ошибку: 1. При использовании ВЭР II рода следует стремиться устранить или снизить их выход, и только тогда, когда все подобные меры приняты использовать. ВЭР I рода 2. Методом утилизации изношенных шин является использование их в качестве ограждение клумб и детских площадок. топлива

Посмотреть все слайды

Сообщить об ошибке