Презентация на тему "Факториал"

Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5

Рецензии

Добавить свою рецензию

Аннотация к презентации

Презентация для школьников на тему "Факториал" по математике. pptCloud.ru — удобный каталог с возможностью скачать powerpoint презентацию бесплатно.

Содержание

  • Слайд 1

    Факториал

    9 класс

  • Слайд 2

    В семье – шесть человек, а за столом в кухне – шесть стульев. В семье решили каждый вечер, ужиная, рассаживаться на эти шесть стульев по-новому. Сколько дней члены семьи смогут делать это без повторений?

    Для удобства будем считать , что семья (бабушка, дедушка, мама, папа, дочь, сын) будет рассаживаться поочередно. У бабушки – 6 вариантов выбора стульев. У дедушки – 5 вариантов выбора стульев. У мамы – 4 варианта выбора стульев. У папы – 3 варианта выбора стульев. У дочери – 2 варианта выбора стульев. У сына – 1 вариант выбора стульев. По правилу умножения: 6×5×4×3×2×1 = 720 (дней).

  • Слайд 3

     

    Произведение подряд идущих первых n натуральных чисел обозначают n! и называют «эн факториал»: n! = 1 × 2 × 3 × 4 ×...×(n - 2)×(n – 1)×n. «factor» - «множитель» «эн факториал» - «состоящий из n множителей». Определение:

  • Слайд 4

     

    Таблица факториалов n! = 1 ∙ 2 ∙ 3 ∙ ...(n – 2) ∙ (n- 1) ∙ n

  • Слайд 5

    n! = (n - 1)!∙ n

    Пример: 7!∙ 4! 6!∙ 7∙ 4! 7 6! ∙ 5! 6! ∙ 4! ∙ 5 5

  • Слайд 6

    Пример:Сколькими способами четыре вора могут по одному разбежаться на все четыре стороны?

    Решение: Пусть воры разбегаются поочередно. У первого – 4 варианта выбора У второго – 3 варианта выбора У третьего – 2 варианта выбора У четвертого – 1 вариант выбора По правилу умножения 4 ∙ 3 ∙ 2 ∙ 1 = 4! = 24 Ответ: 24 способа.

  • Слайд 7

    В 9 классе в среду семь уроков: алгебра, геометрия, литература, русский язык, английский язык, биология и физкультура. Сколько можно составить вариантов расписания на среду?

    Для алгебры – 7 вариантов расположения в расписании Для геометрии – 6 вариантов Для литературы – 5 вариантов и т.д. По правилу умножения получаем 7 ∙ 6 ∙ 5 ∙ 4 ∙ 3 ∙ 2 ∙ 1 = 7! = 5040

  • Слайд 8

    Теорема:n различных элементов можно расставить по одному на n различных мест ровно n! способами.

    Число всех перестановок множества из n элементов равна n! Рn = n! Р – перестановки Р3 = 3! = 6, Р7 = 7! = 5040. или pptcloud.ru

Посмотреть все слайды
Презентация будет доступна через 45 секунд