Презентация на тему "Многогранники и их свойства"

Презентация: Многогранники и их свойства
Включить эффекты
1 из 22
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
5.0
2 оценки

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Скачать презентацию (2.28 Мб). Тема: "Многогранники и их свойства". Предмет: математика. 22 слайда. Добавлена в 2017 году. Средняя оценка: 5.0 балла из 5.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    22
  • Слова
    геометрия
  • Конспект
    Отсутствует

Содержание

  • Презентация: Многогранники и их свойства
    Слайд 1

    Выполнила ученица 11 класса Ламонова Светлана Учитель математики: Стрельникова Л.П. Проект по теме: "Многогранники". 2009 год

  • Слайд 2

    Многогранник — поверхность, составленная из многоугольников, а также тело ограниченное такой поверхностью. Многогранник, точнее трёхмерный многогранник — совокупность конечного числа плоских многоугольников в трёхмерном евклидовом пространстве такая, что: каждая сторона любого из многоугольников есть одновременно сторона другого (но только одного), называемого смежным с первым (по этой стороне); (связность) от любого из многоугольников, составляющих многогранник, можно дойти до любого из них, переходя к смежному с ним, а от этого, в свою очередь, к смежному с ним, и т. д. Эти многоугольники называются гранями, их стороны — рёбрами, а их вершины — вершинами многогранника. Простейшими примерами многогранников являются выпуклые многогранники, т.е. граница ограниченного подмножества евклидова пространства являющееся пересечением конечного числа полупространств. Что такое многогранник? Три варианта определения.

  • Слайд 3

    Приведенное определение многогранника получает различный смысл в зависимости от того, как определить многоугольник, возможны следующие два варианта: Плоские замкнутые ломаные (хотя бы и самопересекающиеся);Части плоскости, ограниченные ломаными. В последнем случае многогранник есть поверхность, составленная из многоугольных кусков. Если эта поверхность сама себя не пересекает, то она есть полная поверхность некоторого геометрического тела, которое также называется многогранником; отсюда возникает третье определение. Как определить многоугольник?

  • Слайд 4

    Многоугольники, из которых составлен многогранники, называются его гранями. Стороны граней называются ребрами. Концы ребер – вершинами многогранника. Отрезок, соединяющий две вершины, не принадлежащие одной грани, называются диагональю многогранника. Многогранник называется выпуклым, если он расположен по одну сторону от плоскости каждой его грани. В выпуклом многограннике сумма всех плоских углов при каждой его вершине меньше 360˚. Понятия многогранника

  • Слайд 5

    Геометрическим телом (или просто телом) называют ограниченную связанную фигуру в пространстве, которая содержит все свои граничные точки, причем сколь угодно близко от любой граничной точки находятся внутренние точки фигуры. Границу тела также называют его поверхностью и говорят, что поверхность ограничивает тело. Точка М называется граничной точкой данной фигуры F, если среди сколь угодно близких к ней точек (включая её саму) есть точки, как принадлежащие фигуре, так и не принадлежащие ей. Множество всех граничных точек фигуры называется её границей. Точка фигуры, не являющаяся граничной, называется внутренней точкой фигуры. Фигура называется ограниченной, если её можно заключить в какую-нибудь сферу. Фигура называется связной, если любые две точки можно соединить непрерывной линией, целиком принадлежащей данной фигуре. Геомерическое тело

  • Слайд 6

    Понятие многогранника индуктивно обобщается по размерности, и обычно называется n-мерный многогранник. Многогранник, двойственный к заданному многограннику — многогранник, у которого каждой грани исходного многогранника соответствует вершина двойственного, каждой вершине исходного — грань двойственного и каждому ребру исходного — ребро двойственного. Многогранник, двойственный двойственному, гомотетичен исходному. Простейший способ построения двойственного многогранника таков: Вершины: находятся в центре граней исходного многогранника. Рёбра: между вершинами проводится ребро, если соответствующие грани имеют общее ребро. Двойственный многогранник.

  • Слайд 7

    Звёздчатый многогранник — это правильный невыпуклый многогранник. Многогранники из-за их необычных свойств симметрии исследуются с древнейших времён. Также формы многогранников широко используются в декоративном искусстве. Звездчатые многогранники очень декоративны, что позволяет широко применять их в ювелирной промышленности при изготовлении всевозможных украшений. Применяются они и в архитектуре. Многие формы звездчатых многогранников подсказывает сама природа. Снежинки — это звездчатые многогранники. С древности люди пытались описать все возможные типы снежинок, составляли специальные атласы. Сейчас известно несколько тысяч различных типов снежинок. Есть много видов звёздчатых многогранников. Наиболее известные это: Звёздчатый октаэдр. Он был открыт Леонардо да Винчи, затем спустя почти 100 лет переоткрыт Иоганном Кеплером, и назван им Stella octangula — звезда восьмиугольная. Отсюда октаэдр имеет и второе название «stella octangula Кеплера». Существует только одна форма звёздчатого октаэдра. Её можно рассматривать как соединение двух тетраэдров. Звёздчатый многогранник.

  • Слайд 8

    Большой звёздчатый додекаэдр принадлежит к семейству тел Кеплера-Пуансо, то есть правильных невыпуклых многогранников. Грани большого звездчатого додекаэдра — пентаграммы, как и у малого звездчатого додекаэдра. У каждой вершины соединяются три грани. Вершины большого звездчатого додекаэдра совпадают с вершинами описанного додекаэдра. Большой звёздчатый додекаэдр был впервые описан Кеплером в 1619 г. Это последняя звездчатая форма правильного додекаэдра. Додекаэдр

  • Слайд 9

    Икосаэдр имеет двадцать граней. Если каждую из них продолжить неограниченно, то тело будет окружено великим многообразием отсеков — частей пространства, ограниченных плоскостями граней. Все звездчатые формы икосаэдра можно получить добавлением к исходному телу таких отсеков. Не считая самого икосаэдра, продолжения его граней отделяют от пространства 20+30+60+20+60+120+ 12+30+60+60 отсеков десяти различных форм и размеров. Большой икосаэдр (см. рис) состоит из всех этих кусков, за исключением последних шестидесяти Икосододекаэдр имеет 32 грани, из которых 12 являются правильными пятиугольными гранями, а остальные 20 — правильные треугольники. Казалось бы, столь большое число граней потребует сложнейших исследований. Что касается вопроса о том, могут ли получившиеся многогранники оказаться правильными, то на него давно получен ответ. Великий математик Коши ещё в 1811 году доказал, что список правильных многогранников исчерпывается пятью платоновыми телами вкупе с четырьмя многогранниками Кеплера — Пуансо. Икосаэдр, Икосододекаэдр.

  • Слайд 10

    Многогранник (точнее — многогранная поверхность) называется изгибаемым, если его пространственную форму можно изменить такой непрерывной во времени деформацией, при которой каждая грань не изменяет своих размеров (то есть движется как твёрдое тело), а деформация осуществляется только за счёт непрерывного изменения двугранных углов. Такая деформация называется непрерывным изгибанием многогранника. В теории изгибаемых многогранников известно немало красивых и нетривиальных утверждений. Ниже приведены наиболее важные из установленных на сегодня фактов, придерживаясь хронологического порядка: Никакой выпуклый многогранник не может быть изгибаемым. Это немедленно вытекает из теоремы Коши об однозначной определённости выпуклого многогранника, доказанной в 1813 году. Первые примеры изгибаемых многогранников были построены бельгийским инженером и математиком Раулем Брикаром в 1897 году. Сейчас их называют октаэдрами Брикара. Они не только невыпуклые, но и имеют самопересечения, что не позволяет построить их движущуюся картонную модель. Изгибаемый многогранник

  • Слайд 11

    В 1976 году американский математик Роберт Коннелли впервые построил изгибаемый многогранник без самопересечений. Из всех известных на сегодняшний день изгибаемых многогранников без самопересечений наименьшее число вершин (девять) имеет многогранник, построенный немецким математиком Клаусом Штеффеном (нем. Klaus Steffen). Известны примеры изгибаемых многогранников, являющихся реализациями тора или бутылки Клейна или вообще двумерной поверхности любого топологического рода. Из формулы Шлефли, следует, что любой изгибаемый многогранник в процессе изгибания сохраняет так называемую интегральную среднюю кривизну, то есть число, равное Теорема Сабитова: Любой изгибаемый многогранник в процессе изгибания сохраняет свой объём, то есть он будет изгибаться даже если его заполнить несжимаемой жидкостью.

  • Слайд 12

    Примеры изгибаемых многогранников Изгибаемый октаэдр Брикара первого типа. Изгибаемый октаэдр Брикара второго типа.

  • Слайд 13

    Несмотря на значительный прогресс, в теории изгибаемых многогранников остаётся много нерешённых проблем. Вот несколько открытых гипотез: многогранник Штеффена имеет наименьшее число вершин среди всех изгибаемых многогранников, не имеющих самопересечений; если один многогранник, не имеющий самопересечений, получен из другого многогранника, который также не имеет самопересечений, непрерывным изгибанием, то эти многогранники равносоставлены, то есть первый можно разбить на конечное число тетраэдров, каждый из этих тетраэдров независимо от других можно передвинуть в пространстве и получить разбиение второго многогранника. Гипотезы

  • Слайд 14

    Два замкнутых выпуклых многогранника конгруэнтны, если между их гранями, рёбрами и вершинами имеется сохраняющее инцидентность взаимно однозначное соответствие, причём соответствующие грани многогранников конгруэнтны. Теорема Минковского о многогранниках — общее название двух теорем о существовании и единственности замкнутого выпуклого многогранника с заданными направлениями и площадями граней. Теорема Коши:

  • Слайд 15

    Если между гранями двух замкнутых выпуклых многогранников установлено взаимно-однозначное соответствие так, что (i) единичные нормали к соответствующим граням совпадают и (ii) площади соответствующих граней одинаковы, то многогранники получаются один из другого параллельным переносом (и, в частности, они конгруэнтны). Теорема единственности Минковского.

  • Слайд 16

    Если между гранями двух замкнутых выпуклых многогранников в трёхмерном евклидовом пространстве установлено взаимно-однозначное соответствие так, что (i) единичные нормали к соответствующим граням совпадают и (ii) ни одну из граней нельзя поместить внутри соответствующей ей гран параллельным переносом, то многогранники получаются один из другого параллельным переносом (и, в частности, они конгруэнтны). Теорема Александрова

  • Слайд 17

    Среди всех выпуклых многогранников трёхмерного евклидова пространства с данными направлениями граней и с данным объёмом наименьшую площадь поверхности имеет многогранник, описанный вокруг шара. Теорема Линделёфа

  • Слайд 18

    Основные теоремы для решения задач по теме: «Многогранники». Теорема о площади прямой призмы: Площадь боковой поверхности прямой призмы равна произведению периметра основания на высоту призмы. Теорема о полной площади поверхности пирамиды: Площадью полной поверхности пирамиды называется сумма площадей всех её граней, а площадью боковой поверхности пирамиды – сумма площадей её боковых граней. Все боковые ребра правильной пирамиды равны, а боковые грани являются равными равнобедренным треугольникам. Теорема о площади боковой поверхности правильной пирамиды: Площадь mjrjdjq поверхности правильной пирамиды равна половине произведения периметра основания на апофему. Теоремы

  • Слайд 19

    Терема о площади боковой поверхности усечённой пирамиды: Площадь боковой поверхности правильной усечённой пирамиды равна произведению полусуммы периметров оснований на высоту. Не существуют праивльного многогранника, гранями которого являются правильные шестиугольники, семиугольники и вообще n-угольники при n≥6.

  • Слайд 20

    Всё сказанное выше относилось к многогранникам в трёхмерном евклидовом пространстве. Однако данное выше определение изгибаемого многогранника применимо и к многомерным пространствам и к неевклидовым пространствам, таким как сферическое пространство и пространство Лобачевского. Для них также известны как нетривиальные теоремы, так и открытые вопросы. Например:доказано, что в четырёхмерном евклидовом пространстве, пространстве Лобачевского размерности 3 и 4, а также в сферическом пространстве размерности 3 и 4 имеются изгибаемые многогранники[9], в то время как существование изгибаемых многогранников в евклидовых пространствах размерности 5 и выше остаётся открытым вопросом;доказано, что любой изгибаемый многогранник в евклидовом пространстве размерности 3 и выше сохраняет свою интегральную среднюю кривизну в процессе изгибания, но неизвестно всякий ли изгибаемый многогранник в евклидовом пространстве размерности 4 и выше сохраняет свой объём в процессе изгибания;доказано, что в трёхмерном сферическом пространстве существует изгибаемый многогранник, объём которого непостоянен в процессе изгибания, но не известно обязательно ли сохраняется объём изгибаемого многогранника в трёхмерном пространстве Лобачевского. Обобщение

  • Слайд 21

    Правильный многогранник, или Платоново тело — это выпуклый многогранник с максимально возможной симметрией. Многогранник называется правильным, если: он выпуклый все его грани являются равными правильными многоугольниками в каждой его вершине сходится одинаковое число граней все его двугранные углы равны.

  • Слайд 22

    Всё!

Посмотреть все слайды

Сообщить об ошибке