Презентация на тему "Первичные описательные статистики"

Презентация: Первичные описательные статистики
1 из 17
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
4.0
1 оценка

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Посмотреть презентацию на тему "Первичные описательные статистики" для студентов в режиме онлайн. Содержит 17 слайдов. Самый большой каталог качественных презентаций по математике в рунете. Если не понравится материал, просто поставьте плохую оценку.

Содержание

  • Презентация: Первичные описательные статистики
    Слайд 1

    Первичные описательные статистики

  • Слайд 2

    Задача

    Возраст педагогических работников (в годах): 18; 38; 40; 28; 29; 26; 38; 34; 22; 28; 30; 22; 23; 35; 33; 27; 24; 30; 32; 49; 37; 28; 25; 29; 26; 31; 24; 29; 27; 32; 25; 29; 29; 52; 58; 44; 39; 57; 19; 25. Насколько молод коллектив?

  • Слайд 3

    Меры центральной тенденции

    Мода (Мо) - значение, которое чаще других встречается в выборке. Если все значения встречаются одинаково часто — мода отсутствует Если два соседних значения имеют одинаковую частоту — мода между ними Выборка считается бимодальной, если два несмежных значения имеют наибольшую частоту

  • Слайд 4

    Меры центральной тенденции: Мода

    В интервальном вариационном ряду: 1)Данные уже сгруппированы в интервалы 2) Найти интервал с максимальной частотой — модальный 3) Считать моду по формуле: Xmo — нижняя граница модального интервала; h — ширина интервала; m — частоты модального, премодального и постмодального интервалов В безинтервальном вариационном ряду: 1) Установить соотвествие между значениями Х и их частотой 2) Самое частое значение, или Mo=Xi При условии mxi >∀mx≠xi

  • Слайд 5

    Меры центральной тенденции

    Медиана (Md) - значение признака, которое делит ранжированное множество данных пополам так, что одна половина оказывается меньше медианы, а другая — больше Если объем выборки — нечетное число, то медиана… Если объем выборки четное число, то медиана…

  • Слайд 6

    Меры центральной тенденции: Медиана

    В интервальном вариационном ряду: 1) Если данные уже сгруппированы в интервалы, 2) Найти медианный интервал, в котором накопленная относительная частота пересекает отметку в 50% 3) Считать медиану по формуле: Xmе - нижняя граница модального интервала; N - объем выборки; Mme-1 - накопленная частота интервала перед медианным h - ширина интервала; mме - частота медианного интервала В безинтервальном вариационном ряду: 1) Расположить все значения по возрастанию 2) Медианой будет значение, находящееся в точном центре ряда. Me=Xi при условии i=(N+1)/2

  • Слайд 7

    Меры центральной тенденции

    Среднее арифметическое - частное от деления всех значений (Хi) на их количество (N) X= Свойства среднего: 1) если к каждому значению прибавить число С, то среднее тоже увеличится на число С; 2) если каждое значение умножить на С, то среднее увеличится в С раз

  • Слайд 8

    Выбор меры центральной тенденции

    «Средняя температура по больнице?» Мода и медиана «не чувствительны» к выбросам (на них не влияет отдельное большое или малое значение); Мода нестабильна в малых выборках; Среднее содержит погрешности на малых выборках с несимметричным распределением Для характеристики малой выборки выбирайте медиану!

  • Слайд 9

    Меры изменчивости

    Размах (Р) – интервал между максимальным и минимальным значениями признака выборка: {1, 2, 3, 4, 5, 6, 7, 7, 8, 9} Размах=8 N=10 Р = Хмах-Хмин

  • Слайд 10

    Среднее абсолютное отклонение (mad) – это среднеарифметическое разницы (по абсолютной величине) между каждым значением в выборке и ее средним mad= где d = |xi – М| - модуль расстояния; М – среднее или медиана выборки; xi – конкретное значение; N – объем выборки

  • Слайд 11

    Дисперсия (S²) — мера изменчивости, пропорциональная сумме квадратов отклонений значений от среднего S²= , для больших выборок S²= , для малых выборок (>30чел)

  • Слайд 12

    Свойства дисперсии

    Если все значения равны друг другу, дисперсия равна 0 (нет рассеяния признака); Если ко всем значениям прибавить число С, это не поменяет дисперсию; Увеличение всех значений в С раз увеличивает дисперсию в С2 раз Применима только для данных метрических шкал! (т.к. является мерой расстояния)

  • Слайд 13

    Меры изменчивости

    Стандартное отклонение (s)или (Sn) — мера изменчивости, являющаяся положительным значением квадратного корня из дисперсии Для больших выборок Для малых выборок Всегда выражается в исходных единицах признака, в отличие от дисперсии    2 2 d Sn 1 2     d Sn

  • Слайд 14

    Асимметрия и эксцесс

    Асимметрия и эксцесс характеризуют распределение признака в выборке, являются 3 и 4 моментами среднего Показатели асимметрии и эксцесса. А= Е= Свойства асимметрии и эксцесса: Если А>0 существенно, то среднее>медианы>моды и наоборот, при отрицательной асимметрии Мо>Ме>М Если Е>0 существенно, то распределение выборки островершинное (большее количество людей набирает близкие к моде баллы); а при Е

  • Слайд 15

    Меры положения

    Квантиль— точка на числовой оси измеренного признака, которая делит всю совокупность измерений на две группы с известным соотношением численности. Квартили — 3 точки — значения признака, которые делят сортированное по возрастанию множество значений на 4 равных интервала (по 25% выборки в каждом). 2-й квартиль — это медиана. Процентили- 99 точек - значений признака.... (аналогично делят на отрезки по 1%) См. накопленные относительные частоты, чтобы понять, каким квантилем является конкретное значение

  • Слайд 16

    Какие описательные статистики можно применять…

    НА ШКАЛЕ НАИМЕНОВАНИЙ? НА РАНГОВОЙ ШКАЛЕ? НА ШКАЛЕ ИНТЕРВАЛОВ? НА ШКАЛЕ РАВНЫХ ОТНОШЕНИЙ?

  • Слайд 17

    Метрика — функция, вводящая понятие расстояния между двумя элементами a и b множества А

    Расстояние — числовая функция R(a, b), удовлетворяющая следующим условиям: (1) R(a, b)≥ 0, причем R(a, b) = 0 тогда и только тогда, когда a = b; (2) R(a, b) = R(b, a); (3) R(a, b) + R(b, c) ≥ R(a, c), «правило треугольника». Введение метрики делит шкалы на неметрические и метрические.

Посмотреть все слайды

Сообщить об ошибке