Презентация на тему "История вычислительной техники"

Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5

Рецензии

Добавить свою рецензию

Аннотация к презентации

Презентация для школьников на тему "История вычислительной техники" по обществознанию. pptCloud.ru — удобный каталог с возможностью скачать powerpoint презентацию бесплатно.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    46
  • Слова
    обществознание
  • Конспект
    Отсутствует

Содержание

  • Слайд 1

    ИСТОРИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

    © К.Ю. Поляков, 2007-2008 Древние средства счета Первые вычислительные машины Первые компьютеры Принципы фон Неймана Поколения компьютеров (I-IV) Персональные компьютеры Современная цифровая техника

  • Слайд 2

     

    Кости с зарубками («вестоницкая кость», Чехия, 30 тыс. лет до н.э) Узелковое письмо (Южная Америка, VII век н.э.) узлы с вплетенными камнями нити разного цвета (красная – число воинов, желтая – золото) десятичная система Древние средства счета

  • Слайд 3

     

    о. Саламин в Эгейском море (300 лет до н.э.) бороздки – единицы, десятки, сотни, … количество камней – цифры десятичная система Саламинская доска

  • Слайд 4

     

    Абак (Древний Рим) – V-VI в. Суан-пан (Китай) – VI в. Соробан (Япония) XV-XVI в. Счеты (Россия) – XVII в. Абак и его «родственники»

  • Слайд 5

     

    Леонардо да Винчи (XV в.) –суммирующее устройство с зубчатыми колесами: сложение 13-разрядных чисел Вильгельм Шиккард (XVI в.) –суммирующие «счетные часы»: сложение и умножение 6-разрядных чисел(машина построена, но сгорела) Первые проекты счетных машин

  • Слайд 6

     

    Блез Паскаль (1623 - 1662) машинапостроена! зубчатые колеса сложение и вычитание 8-разрядных чисел десятичная система ’ «Паскалина» (1642)

  • Слайд 7

     

    Вильгельм Готфрид Лейбниц(1646 - 1716) сложение, вычитание, умножение, деление! 12-разрядные числа десятичная система Арифмометр «Феликс»(СССР, 1929-1978) – развитие идей машины Лейбница Машина Лейбница (1672)

  • Слайд 8

     

    Разностная машина (1822) Аналитическая машина (1834) «мельница» (автоматическое выполнение вычислений) «склад» (хранение данных) «контора» (управление) ввод данных и программы с перфокарт ввод программы «на ходу» Ада Лавлейс (1815-1852) первая программа – вычисление чисел Бернулли (циклы, условные переходы) 1979 – язык программирования Ада Машины Чарльза Бэббиджа

  • Слайд 9

     

    Основы математической логики: Джордж Буль(1815 - 1864). Электронно-лучевая трубка (Дж. Томсон, 1897) Вакуумные лампы – диод, триод (1906) Триггер – устройство для хранения бита (М.А. Бонч-Бруевич, 1918). Использование математической логики в компьютах (К. Шеннон, 1936) Прогресс в науке

  • Слайд 10

     

    1937-1941. Конрад Цузе:Z1, Z2, Z3, Z4. электромеханические реле (устройства с двумя состояниями) двоичная система использование булевой алгебры ввод данных с киноленты 1939-1942. Первый макет электронного лампового компьютера, Дж. Атанасофф двоичная система решение систем 29 линейных уравнений Первые компьютеры

  • Слайд 11

     

    Разработчик – Говард Айкен (1900-1973) Первый компьютер в США: длина 17 м, вес 5 тонн 75 000 электронных ламп 3000 механических реле сложение – 3 секунды, деление – 12 секунд Марк-I (1944)

  • Слайд 12

     

    Хранение данных на бумажной ленте А это – программа… Марк-I (1944)

  • Слайд 13

     

    Принцип двоичного кодирования: вся информация кодируется в двоичном виде. Принцип программного управления: программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности. Принцип однородности памяти: программы и данные хранятся в одной и той же памяти. Принцип адресности: память состоит из пронумерованных ячеек; процессору в любой момент времени доступна любая ячейка. («Предварительный доклад о машине EDVAC», 1945) Принципы фон Неймана

  • Слайд 14

     

    I. 1945 – 1955 электронно-вакуумные лампы II. 1955 – 1965 транзисторы III. 1965 – 1980 интегральные микросхемы IV. с 1980 по … большие и сверхбольшие интегральные схемы (БИС и СБИС) Поколения компьютеров

  • Слайд 15

     

    на электронных лампах быстродействие 10-20 тыс. операций в секунду каждая машина имеет свой язык нет операционных систем ввод и вывод: перфоленты, перфокарты, магнитные ленты I поколение (1945-1955)

  • Слайд 16

     

    Electronic Numerical Integrator And Computer Дж. Моучли и П. Эккерт Первый компьютер общего назначения на электронных лампах: длина 26 м, вес 35 тонн сложение – 1/5000 сек, деление – 1/300 сек десятичная система счисления 10-разрядные числа ЭНИАК (1946)

  • Слайд 17

     

    1951. МЭСМ – малая электронно-счетная машина 6 000 электронных ламп 3 000 операций в секунду двоичная система 1952. БЭСМ – большая электронно-счетная машина 5 000 электронных ламп 10 000 операций в секунду Компьютеры С.А. Лебедева

  • Слайд 18

     

    на полупроводниковых транзисторах(1948, Дж. Бардин, У. Брэттейн и У. Шокли) 10-200 тыс. операций в секунду первые операционные системы первые языки программирования: Фортран (1957), Алгол (1959) средства хранения информации: магнитные барабаны, магнитные диски II поколение (1955-1965)

  • Слайд 19

     

    1953-1955. IBM 604, IBM 608, IBM 702 1965-1966. БЭСМ-6 60 000 транзисторов 200 000 диодов 1 млн. операцийв секунду память – магнитная лента, магнитный барабан работали дл 90-х гг. II поколение (1955-1965)

  • Слайд 20

     

    на интегральных микросхемах(1958, Дж. Килби) быстродействие до 1 млн. операций в секунду оперативная памяти – сотни Кбайт операционные системы– управление памятью, устройствами, временем процессора языки программирования Бэйсик(1965), Паскаль(1970, Н. Вирт), Си (1972, Д. Ритчи) совместимость программ III поколение (1965-1980)

  • Слайд 21

     

    большие универсальные компьютеры 1964. IBM/360фирмы IBM. кэш-память конвейерная обработка команд операционная система OS/360 1 байт = 8 бит (а не 4 или 6!) разделение времени 1970. IBM/370 1990. IBM/390 дисковод принтер Мэйнфреймы IBM

  • Слайд 22

     

    1971. ЕС-1020 20 тыс. оп/c память 256 Кб 1977. ЕС-1060 1 млн. оп/c память 8 Мб 1984. ЕС-1066 5,5 млн. оп/с память 16 Мб магнитные ленты принтер Компьютеры ЕС ЭВМ (СССР)

  • Слайд 23

     

    Серия PDPфирмы DEC меньшая цена проще программировать графический экран СМ ЭВМ– система малых машин (СССР) до 3 млн. оп/c память до 5 Мб Миникомпьютеры

  • Слайд 24

     

    компьютеры на больших и сверхбольшихинтегральных схемах (БИС, СБИС) суперкомпьютеры персональные компьютеры появление пользователей-непрофессионалов, необходимость «дружественного» интерфейса более 1 млрд. операций в секунду оперативная памяти – до нескольких гигабайт многопроцессорные системы компьютерные сети мультимедиа (графика, анимация, звук) IV поколение (с 1980 по …)

  • Слайд 25

     

    1972. ILLIAC-IV (США) 20 млн. оп/c многопроцессорная система 1976. Cray-1 (США) 166 млн. оп/c память 8 Мб векторные вычисления 1980. Эльбрус-1 (СССР) 15 млн. оп/c память 64 Мб 1985. Эльбрус-2 8 процессоров 125 млн. оп/c память 144 Мб водяное охлаждение Суперкомпьютеры

  • Слайд 26

     

    1985. Cray-2 2 млрд. оп/c 1989. Cray-3 5 млрд. оп/c 1995. GRAPE-4(Япония) 1692 процессора 1,08 трлн. оп/c 2002. Earth Simulator (NEC) 5120 процессоров 36 трлн. оп/c 2007. BlueGene/L (IBM) 212 992 процессора 596 трлн. оп/c Суперкомпьютеры

  • Слайд 27

     

    1971. Intel 4004 4-битные данные 2250 транзисторов 60 тыс. операций в секунду. 1974. Intel 8080 8-битные данные деление чисел Микропроцессоры

  • Слайд 28

     

    1985. Intel 80386 275 000 транзисторов виртуальная память 1989. Intel 80486 1,2 млн. транзисторов 1993-1996. Pentium частоты 50-200 МГц 1997-2000. Pentium-II, Celeron 7,5 млн. транзисторов частоты до 500 МГц 1999-2001.Pentium-III, Celeron 28 млн. транзисторов частоты до 1 ГГц 2000-… Pentium 4 42 млн. транзисторов частоты до 3,4 ГГц 2006-… Intel Core 2 до 291 млн. транзисторов частоты до 3,4 ГГц Процессоры Intel

  • Слайд 29

     

    1995-1997. K5, K6(аналог Pentium) 1999-2000. AthlonK7(Pentium-III) частота до 1 ГГц MMX, 3DNow! 2000. Duron(Celeron) частота до 1,8 ГГц 2001. Athlon XP (Pentium 4) 2003. Opteron(серверы)Athlon 64 X2 частота до 3 ГГц 2004. Sempron(Celeron D) частота до 2 ГГц 2006. Turion (Intel Core) частота до 2 ГГц Advanced Micro Devices Процессоры AMD

  • Слайд 30

     

    1974. Альтаир-8800 (Э. Робертс) комплект для сборки процессор Intel 8080 частота 2 МГц память 256 байт 1975. Б. Гейтс и П. Аллен транслятор языка Альтаир-Бейсик Первый микрокомпьютер

  • Слайд 31

     

    1976. Apple-IС. Возняк и С. Джобс 1977. Apple-II - стандарт в школах США в 1980-х тактовая частота 1 МГц память 48 Кб цветная графика звук встроенный язык Бейсик первые электронные таблицы VisiCalc Компьютеры Apple

  • Слайд 32

     

    1983. «Apple-IIe» память 128 Кб 2 дисковода 5,25 дюйма с гибкими дисками 1983. «Lisa» первый компьютер, управляемый мышью 1984. «Apple-IIc» портативный компьютер жидкокристаллический дисплей Компьютеры Apple

  • Слайд 33

     

    1984. Macintosh системный блок и мониторв одном корпусе нет жесткого диска дискеты 3,5 дюйма 1985. Excelдля Macintosh 1992. PowerBook PowerMac G3 (1997) PowerMac G4 (1999) iMac (1999) PowerMac G4 Cube (2000) Компьютеры Apple

  • Слайд 34

     

    2006. MacPro процессор - до 8 ядер память до 16 Гб винчестер(ы) до 4 Тб 2006. MacBook монитор 15’’ или 17’’ Intel Core 2 Duo память до 4 Гб винчестер до 300 Гб 2007. iPhone телефон музыка, фото, видео Интернет GPS Компьютеры Apple

  • Слайд 35

     

    2008. MacBook Air процессор Intel Core 2 Duo память 2 Гб винчестер 80 Гб флэш-дискSSD 64 Гб 2009. Magic Mouse чувствительная поверхность ЛКМ, ПКМ прокруткав любомнаправлении масштаб (+Ctrl) прокрутка двумя пальцами (листаниестраниц) Компьютеры Apple

  • Слайд 36

     

    36 Мышь с чувствительно поверхностью Magic Mouse (фирма Apple) щелчок ЛКМ и ПКМ прокрутка листание страниц и фотографий + Ctrl = масштаб только Mac, MacBook, iTunes, Safari, iPhone

  • Слайд 37

     

    2010. iPad – Интернет-планшет процессор Apple A4 флэш-память до 64 Гб сенсорный экран время работы 10 ч WiFi, BlueTooth мобильная связь 3G, Интернет Компьютеры Apple

  • Слайд 38

     

    1. Монитор 2. Материнская плата 3. Процессор 4. ОЗУ 5. Карты расширения 6. Блок питания 7. Дисковод CD, DVD 8. Винчестер 9. Клавиатура 10. Мышь Компьютеры IBM PC

  • Слайд 39

     

    Компьютер собирается из отдельных частей как конструктор. Много сторонних производителей дополнительных устройств. Каждый пользователь может собрать компьютер, соответствующий его личным требованиям. Стандартизируются и публикуются: принципы действия компьютера способы подключения новых устройств Есть разъемы (слоты) для подключения устройств. Принцип открытой архитектуры

  • Слайд 40

     

    1981. IBM 5150 процессор Intel 8088 частота 4,77 МГц память 64 Кб гибкие диски 5,25 дюйма 1983. IBM PC XT память до 640 Кб винчестер 10 Мб 1985. IBM PC AT процессор Intel 80286 частота 8 МГц винчестер 20 Мб Компьютеры IBM

  • Слайд 41

     

    1985. Amiga-1000 процессор Motorolla 7 МГц память до 8 Мб дисплей до 4096 цветов мышь многозадачная ОС 4-канальный стереозвук технология Plug and Play (autoconfig) Multi-Media – использование различных средств (текст, звук, графика, видео, анимация, интерактивность) для передачи информации Мультимедиа

  • Слайд 42

     

    1985. Windows 1.0 многозадачность 1992. Windows 3.1 виртуальная память 1993. Windows NT файловая система NTFS 1995. Windows 95 длинные имена файлов файловая система FAT32 1998. Windows 98 2000. Windows 2000, Windows Me 2001. Windows XP 2006. Windows Vista 2009. Windows 7 Microsoft Windows

  • Слайд 43

     

    Дисковод CD/DVD Видеокарта TV-тюнер Звуковая карта Звуковые колонки Наушники Джойстик Руль Шлемы виртуальной реальности Геймпад Микрофон Устройства мультимедиа

  • Слайд 44

     

    Ноутбук КПК – карманный персональный компьютер MP3-плеер Электронная записная книжка GPS-навигатор Мультимедийный проектор Цифровой фотоаппарат Цифровая видеокамера Современная цифровая техника

  • Слайд 45

     

    Цель – создание суперкомпьютера с функциями искусственного интеллекта обработка знаний с помощью логических средств (язык Пролог) сверхбольшие базы данных использование параллельных вычислений распределенные вычисления голосовое общение с компьютером постепенная замена программных средств на аппаратные Проблемы: идея саморазвития системы провалилась невернаяоценка баланса программных и аппаратных средств традиционные компьютеры достигли большего ненадежность технологий израсходовано 50 млрд. йен V поколение (проект 1980-х, Япония)

  • Слайд 46

     

    Проблемы: приближение к физическому пределу быстродействия сложность программного обеспечения приводит к снижению надежности Перспективы: квантовые компьютеры эффекты квантовой механики параллельность вычислений 2006 – компьютер из 7 кубит оптические компьютеры («замороженный свет») биокомпьютеры на основе ДНК химическая реакция с участием ферментов 330 трлн. операций в секунду Проблемы и перспективы

Посмотреть все слайды
Презентация будет доступна через 45 секунд