Презентация на тему "Преобразование аналогового сигнала в цифровой"

Презентация: Преобразование аналогового сигнала в цифровой
Включить эффекты
1 из 14
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
4.4
3 оценки

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

"Преобразование аналогового сигнала в цифровой" состоит из 14 слайдов: лучшая powerpoint презентация на эту тему с анимацией находится здесь! Средняя оценка: 4.4 балла из 5. Вам понравилось? Оцените материал! Загружена в 2018 году.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    14
  • Слова
    другое
  • Конспект
    Отсутствует

Содержание

  • Презентация: Преобразование аналогового сигнала в цифровой
    Слайд 1

    Преобразование аналогового сигнала в цифровой.

  • Слайд 2

    Прежде чем электронное цифровое устройство сможет интерпретировать аналоговую информацию, сигнал должен быть переведен на двоичный язык последовательность 1 и 0.

    Это достигается при помощи аналого-цифрового преобразователя (АЦП).

  • Слайд 3

    Операции преобразования аналогового сигнала в цифровой:

    дискретизацию квантование кодирование

  • Слайд 4

    Дискретизация —преобразование непрерывной функции в дискретную.

    На рисунке показана наиболее распространенная равномерная дискретизация. Сначала имеется непрерывный сигнал S(t). Затем он подвергается разбиению на равные промежутки времени Δt. Вот эти промежутки и есть дискретные отсчеты, называемые периодами дискретизации. В результате получается последовательность отсчетов (дискретных) с шагом в Δt. По сути в основе дискретизации непрерывных сигналов лежит возможность представления их, т. е. сигналов в виде взвешенных сумм некоторых коэффициентов. Δt

  • Слайд 5

    шаг дискретизации, тем выше частота дискретизации (то есть, тем чаще регистрируются значения амплитуды), и, значит, тем более точное представление о сигнале мы получаем. Это рассуждение подтверждается доказанной теоремой Котельникова .Согласно этой теореме, аналоговый сигнал с ограниченным спектром может быть точно описан дискретной последовательностью значений его амплитуды, если эти значения следуют с частотой, как минимум вдвое превышающей наивысшую частоту спектра. На практике это означает следующее: для того, чтобы оцифрованный сигнал содержал информацию о всем диапазоне слышимых человеком частот исходного аналогового сигнала (0 – 20 кГц) необходимо, чтобы выбранное значение частоты дискретизации при оцифровке сигнала составляло не менее 40 кГц. Количество осуществляемых в одну секунду замеров величины сигнала называют частотой дискретизации или частотой выборки. Очевидно, что чем меньше Дискретизация

  • Слайд 6

    — разбиение диапазона значений непрерывной или дискретной величины на конечное число интервалов. Квантование

  • Слайд 7

    Квантование Представляет собой замену величины отсчета сигнала ближайшим значением из набора фиксированных величин - уровней квантования. Другими словами, квантование - это округление величины отсчета. Не следует путать квантование с дискретизацией (и, соответственно, шаг квантованияс частотой дискретизации). При дискретизации изменяющаяся во времени величина (сигнал) замеряется с заданной частотой (частотой дискретизации), таким образом, дискретизация разбивает сигнал по временной составляющей (на графике — по горизонтали). Квантование же приводит сигнал к заданным значениям, то есть, разбивает по уровню сигнала (на графике — по вертикали). Сигнал, к которому применены дискретизация и квантование, называется цифровым.

  • Слайд 8

    Методы квантования. Импульсно-кодовая модуляция Дельта-модуляция Сигма-дельта модуляция

  • Слайд 9
  • Слайд 10

    –это операция преобразование квантованного сигнала в последовательность кодовых слов. Кодирование

  • Слайд 11

    Каждое кодовое слово передается в пределах одного интервала дискретизации. Для кодирования сигналов звука и изображения широко применяют двоичный код. Если квантованный сигнал может принимать N значений, то число двоичных символов в каждом кодовом слове n >= log2N. Один разряд, или символ слова, представленного в двоичном коде, называют битом. Обычно число уровней квантования равно целой степени числа 2, т.е. N = 2n. Кодирование Кодовые слова можно передавать в параллельной или последовательной формах . Для передачи в параллельной форме надо использовать n линий связи (в примере, показанном на рисунке, n = 4)

  • Слайд 12

    Операции, связанные с преобразованием аналогового сигнала в цифровую форму (дискретизация, квантование и кодирование), выполняются одним устройством - аналого-цифровым преобразователем (АЦП). Сейчас АЦП может быть просто интегральной микросхемой. Обратная процедура, т.е. восстановление аналогового сигнала из последовательности кодовых слов, производится в цифро-аналоговом преобразователе (ЦАП). АЦП и ЦАП

  • Слайд 13

    Сейчас существуют технические возможности для реализации всех обработок сигналов звука и изображения, включая запись и излучение в эфир, в цифровой форме. Однако в качестве датчиков сигнала (например, микрофон, передающая ТВ трубка или прибор с зарядовой связью) и устройств воспроизведения звука и изображения (например, громкоговоритель, кинескоп) пока используются аналоговые устройства. Поэтому аналого-цифровые и цифро-аналоговые преобразователи являются неотъемлемой частью цифровых систем. АЦП и ЦАП

  • Слайд 14

    На сегодня совершенно очевидно лишь одно – цифровые технологии находятся лишь в начале своего пути, и нам еще только предстоит понять, что значит их повсеместное внедрение совместно с миниатюризацией, наращиванием вычислительных мощностей и объемов памяти. Совершенно ясно, что цифровые технологии очень скоро завоюют новые, еще не захваченные рубежи, и что от повсеместного применения этих технологий никуда не деться. Опасаться этого процесса можно, но сопротивляться ему бесполезно. Что же касается цифрового звука – части цифровой революции – то здесь все только начинается. Что в этой области уже сегодня получил потребитель? Очень компактные цифровые аудио проигрыватели, высококачественную мобильную и Интернет-телефонию, домашние кинотеатры с объемным звучанием. Только представьте себе, как развитие этих технологий может повлиять на окружающий нас мир! Все это лишь укрепляет мысли о том, что путь не близок, и что самое интересное нам еще только предстоит увидеть.

Посмотреть все слайды

Сообщить об ошибке