Презентация на тему "Остеотропные материалы"

Презентация: Остеотропные материалы
1 из 15
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
0.0
0 оценок

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Скачать презентацию (0.46 Мб). Тема: "Остеотропные материалы". Содержит 15 слайдов. Посмотреть онлайн. Загружена пользователем в 2018 году. Оценить. Быстрый поиск похожих материалов.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    15
  • Слова
    другое
  • Конспект
    Отсутствует

Содержание

  • Презентация: Остеотропные материалы
    Слайд 1

    Остеотропные материалы

  • Слайд 2

    Введение:

    Замещение костных дефектов является одной из актуальных проблем современной стоматологии. Нарушение структуры и функции кости альвеолярных отростков крайне негативно отражается на состоянии пародонта. С целью воссоздания утраченного объема костной тканью широко применяются различные материалы – синтетические и биологические, от выбора в конечном итоге зависит успех восстановления костного дефекта и дальнейшего остеогенеза.         В настоящее время, несмотря на очевидные успехи науки и несомненное повышение в целом качества лечения пародонтита, распространенность данного заболевания неуклонно растет (ВОЗ, 1980, 1990; D.Barmes, 1993; ХармияМаркетта, 1997). Таким образом, проблема лечения заболеваний пародонта является одной из актуальнейших задач современной стоматологии. Проблема лечения заболеваний пародонта является одной из актуальнейших задач современной стоматологии.

  • Слайд 3

    Отсутствие ощутимых жалоб и неудобств на ранних стадиях заболевания приводит к тому, что значительная часть пациентов обращается за помощью в тот момент, когда деструкция тканей достигла значительных размеров. Тяжесть течения пародонтита и выраженные деструктивные явления диктуют необходимость применения средств, усиливающих эффективность хирургического лечения. К сожалению, многие из применяемых материалов имеют отдельные недостатки, что диктует необходимость поиска новых, более совершенных материалов. Постоянное развитие науки также способствует этому, т.к. создание подобных материалов в настоящее время невозможно без четкой теоретической основы и использования последних достижений медицины. Одной из основных задач тканевой инженерии в области лечения костных патологий является создание искусственных композитов, состоящих из алло- и/или ксеноматериалов в сочетании с биоактивными молекулами (костные морфогенетические белки, факторы роста и т.д.) и способных индуцировать остеогенез. 

  • Слайд 4

    Костная ткань – живая ткань, выполняющая ряд ключевых функций в организме. Кроме опорной и защитной функций, кость также участвует в регуляции минерального гомеостаза. Костная ткань депонирует кроветворные и мезенхимальные стволовые клетки, обеспечивая обновление различных тканей организма на протяжении всей жизни. Кроме того, костная ткань способна ремоделироваться на протяжении всей жизни, адаптируясь к изменениям нагрузки, и поддерживать оптимальный баланс между формой и функцией. Развитие костной ткани – остеогенез или оссификация начинается в мезенхимальной эмбриональной ткани, содержащей капилляры. 

  • Слайд 5

    Макроскопически в кости можно выделить внешнюю часть, которая называется кортикальной, или компактной костью, составляющую приблизительно 70% от общего скелета, и внутреннюю часть, названную сетчатой, трабекулярной, или губчатой костью. Структура из защитного кортикального слоя и трехмерной трабекулярной сетки обеспечивает оптимальную механическую функцию при минимальной костной массе. 

  • Слайд 6

    Между компактной и трабекулярной костью существуют качественные и структурные различия: компактная кость минерализована на 80–90%, а трабекулярная – лишь на 15–20%. Функциональные же различия между ними состоят в том, что первая выполняет в основном опорную функцию, а вторая – метаболическую. Плотность кортикальной кости является показателем качества кости, геометрические параметры – показателем массы кости (в частности, площадь кортикальной кости) и распределения костного материала (толщина кортикальной пластинки). Оба типа костной ткани (компактная и трабекулярная) содержат одинаковые клеточные элементы и межклеточное вещество, составляющее органическую основу ткани, а также минеральные вещества. Собственно костными клетками следует считать остеобласты, остеоциты и остеокласты, а также продукты различных стадий их возможной дифференцировки, выстилающие и остеогенные клетки.  Мезенхимальныеклетки кости – недифференцированные клетки кости (контурные клетки кости, выстилающие клетки кости, остеогенные клетки кости) находятся главным образом в составе внутреннего слоя надкостницы, покрывающей поверхность кости снаружи, – периоста, а также в составе эндоста, выстилающего контуры всех внутренних полостей кости, внутренние поверхности кости. Поэтому их называют выстилающими или контурными клетками (bone-liningcells). Из этих клеток могут образовываться новые клетки кости – остеобласты и остеокласты. В соответствии с этой их функцией их также называют остеогенными клетками (osteogeniccells). Остеогенные клетки находятся также в составе костного мозга. 

  • Слайд 7

    Различают два типа остеогенных клеток. Одни из них имеют веретенообразную форму, не проявляют признаков активного развития и потому их называют покоящимися остеогенными клетками. Другие остеогенные клетки имеют округлую форму. В их ядрах и цитоплазме обнаруживают высокое содержание РНК. Это является признаком активного развития, роста и дифференцирования. Поэтому такой тип остеогенных клеток называют активированными. Контурные клетки представляют собой трансформированные остеобласты, которые возмещают слой покоящихся клеток на поверхностях кости, вместо клеток, умирающих в результате апоптоза. Контурные клетки являются постпролиферативными клетками, покрывающими те поверхности кости, которые не находятся ни в стадии резорбции, ни в стадии воссоздания. Исследования показали, что эти клетки могут синтезировать и выделять цитокины и другие вещества, управляющие сигналами, активирующими остеокласты. Таким образом, контурные клетки участвуют в управлении перестройкой костной ткани.

  • Слайд 8

    Клеточный синцитий кости, образованный остеоцитами костной ткани, вырабатывает и реализует управляющие сигналы пропорционально механической нагрузке. Показано, что остеоциты могут посылать к остеобластам тормозные управляющие сигналы, которые уменьшают скорость образования ими кости. Также показано, что тормозные управляющие сигналы, сформированные остеоцитами в ответ на увеличение механической нагрузки на кость, могут уменьшать активирующее влияние контурных клеток на перестройку кости.  Недифференцированные мезенхимальные клетки могут находиться в любых тканях организма и при определенных условиях способны продуцировать костную ткань. И хотя не обнаружено их отчетливых морфологических отличий от мезенхимальных клеток кости, функциональные различия очевидны.  Костное моделирование осуществляется: во-первых, с участием остеокластов, которые подвергают эрозии костные поверхности, и, во-вторых, с участием остеобластов, капилляров и опорных клеток, которые создают новые поверхности. Оба эти процесса стереоскопически повторяют друг друга. 

  • Слайд 9

    Нарушение структуры и функции кости альвеолярных отростков крайне негативно отражается на состоянии пародонта. Возникающий в тканях пародонта патологический процесс затрагивает все его структуры, включая альвеолярные отростки челюстей и альвеолярную кость. При этом наиболее часто выявляются следующие патологические изменения костной ткани – остеопороз, деструкция, атрофия или остеосклероз. В комплексе с другими неблагоприятными факторами это ведет к ускоренной потере зубов и быстро прогрессирующей атрофии альвеолярных отростков, что в дальнейшем существенно усложняет ортопедическое лечение с применением внутрикостных дентальных имплантатов. 

  • Слайд 10

    С целью восстановления структуры и функции тех или иных костей требуется проведение реконструктивных операций с применением различных остеозамещающих материалов. 

    Все существующие костнопластические материалы можно разделить на следующие большие группы: аутокость, аллокость, ксенокость, синтетические материалы и комбинация вышеуказанных материалов. 

  • Слайд 11

    Были разработаны общие критерии, которым должны отвечать современные материалы, имплантируемые в костный дефект:

    Во-первых, они должны выполнять и поддерживать объем дефекта. Во-вторых, обладать остеоиндуктивностью, т.е. активно побуждать остеобласты к формированию кости. В-третьих, быть биодеградируемыми и не вызывать у реципиента воспалительных реакций, т.е. обладать биосовместимостью. Биосовместимость– способность материала, изделия или устройства выполнять свои функции и не вызывать отрицательных реакций в организме «хозяина» – является важнейшим критерием при выборе того или иного пособия при пластике или реконструкции. 

  • Слайд 12

    Время биорезорбции имеют решающие значение для материалов, имплантируемых в костные дефекты, т.к. они должны выполнять функцию временного матрикса (остеокондуктивную), необходимого для выполнения роли каркаса для врастания клеток и сосудов в структуру материала, для чего необходимо определенное время.  Другим важным свойством материалов, используемых при замещении костных дефектов, является биоинтеграция или способность материала постепенно без резкого фиброзообразования замещаться той тканью, в которую он помещен. Известно, что поддерживающий эффект любого материала обеспечивается, как правило, его структурными особенностями. Для биоматериалов этот показатель обычно связан с архитектоникой нативной ткани, из которой он получен. Для материалов на основе костной ткани, параметрами ее структурной прочности являются твердо-эластические характеристики костного матрикса и величина пор в нем.  Определенные дефекты костной ткани, особенно при патологических состояниях, не могут быть устранены путем ее физиологической регенерации или благодаря простому хирургическому вмешательству. В таких случаях для восстановления ткани, как правило, применяются материалы, способные либо механически выполнять опорные функции кости (остеокондуктивные), либо оказывать индуцирующее влияние на процессы регенерации в костном дефекте или остеоиндуктивные. 

  • Слайд 13

    Важнейшим аспектом использования биоматериалов является их безопасность. Биоматериалы, получаемые из тканей и органов животных, имеют определенную степень контаминированности или бактериальной загрязненности. Наиболее адекватным способом снижения и нейтрализации бактериальной контаминации является стерилизация.  Ксенокостьявляется самым доступным материалом в связи с наличием большого наличия источников. Минусами ксенокости является более высокая иммуногенность из-за видоспецифичности и возможность передачи инфекции. Установлена проблема, связанная с вирулентностью прионов – носителей заболевания Крейтцфельдта – Якоба. В США и странах Евросоюза запрещены все препараты, получаемые из костного мозга, губчатой кости, гипофиза и эпифиза крупного рогатого скота. Американская организация FDA выступила с инициативой, что те лица, которым применялся остеотропный материал ксеногенного происхождения, не могут быть донорами крови либо органов.  В настоящее время для замещения костных дефектов в хирургической стоматологии используются много различных форм гидроксиапатита (ГА), отличающихся по форме и величине частиц. Считается, что искусственно полученный ГА по химическому составу и кристаллографическим показателям практически идентичен ГА нативной кости. 

  • Слайд 14

    В процессе замещения костного дефекта в присутствии ГА под влиянием биологических жидкостей и тканевых ферментов ГА может частично или полностью резорбироваться. Положительный эффект ГА после его имплантации в костную полость объясняется, по-видимому, не только остеокондуктивными свойствами материала, но и его способностью сорбировать на своей поверхности белки, индуцирующие остеогенез.  Из синтетических материалов в качестве носителей для трансплантации клеток в настоящее время широко применяют керамику, которая представляет из себя искусственный ГА, полученный при обработке трикальций фосфата высокими температурами. 

  • Слайд 15

    Пример:

    Остеокондуктивный материал EasyGraft– это биорезорбируемый, полностью синтетический остеотропный материал. Благодаря новаторской концепции, биоматериал обладает высочайшими клиническими преимуществами: - чистая фаза бета-трикальций фосфата обеспечивает полную резорбцию и регенерацию костной ткани; - высокая пористость обеспечивает прорастание костных клеток в промежутки между гранулами; - покрытие гранул оболочкой полилактоидной кислоты препятствует образованию колоний бактерий и инфицированию лунки; - пропитывание кровью придает гемостатический эффект; - высокая биосовместимость демонстрируется при анализе гистологических исследований; - непосредственный контакт с костью улучшает процесс регенерации; - формирование новой кости идет параллельно с процессом резорбции. 

Посмотреть все слайды

Сообщить об ошибке