Презентация на тему "Типы интегральных схем"

Презентация: Типы интегральных схем
Включить эффекты
1 из 14
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
0.0
0 оценок

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Посмотреть и скачать презентацию по теме "Типы интегральных схем" по физике, включающую в себя 14 слайдов. Скачать файл презентации 0.26 Мб. Большой выбор учебных powerpoint презентаций по физике

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    14
  • Слова
    физика
  • Конспект
    Отсутствует

Содержание

  • Презентация: Типы интегральных схем
    Слайд 1

    Типы интегральных схем

    Дополнительный материал по теме: “Полупроводники” Учитель физики Кюкяйской СОШ Сунтарского улуса Республики Саха Федоров А. М.

  • Слайд 2

    p-n переход

    Полупроводники, из которых изготовляют транзисторы и диоды, разделяются на полупроводники с электронной - n( negative - отрицательный) и дырочной – p (positive – положительный) проводимостью. Принцип действия полупроводниковых диодов основан на свойствах p-n перехода, когда в контакте находятся два полупроводника p и n типа. В месте контакта происходит диффузия положительных зарядов (дырок) из области p в область n, а электронов обратно, из n в p. Однако без внешнего воздействия процесс стабилизируется, потому что образуется так называемый запирающий слой. __ __ __ __ __ __ __ __ n p + + + + + + _ _ _ _ _ _ + + + + + + + + + + + + + +

  • Слайд 3

    Полупроводниковые диоды

    При подключении к области p “ плюса “ источника электрического тока, а к n “минуса”, запирающий слой разрушится, такой диод будет проводить ток. Если осуществить подключение источника питания наоборот, т. е. к p – “минус”, а к n – “плюс”, то ток будет фактически равен нулю. Это основное свойствополупроводниковых диодов позволяет применять их в качестве выпрямителей тока. Большинство полупроводников делается из кремния и германия с различными добавками, из оксидов некоторых металлов. В зависимости от добавок они имеют n- или p-тип. А К прямое вкл обратное вкл

  • Слайд 4

    Транзистор

    Транзистор представляет собой трехслойную структуру из таких же полупроводниковых материалов, однако в основе его работы лежит не один, а два p-n перехода. Внешние слои называют эмиттером и коллектором, а средний (обычно очень тонкий, порядка нескольких микрон) слой – базой.

  • Слайд 5

    Биполярный транзистор

    Тип n – p – n Тип p – n – p n p n p n p Э Б К Основной недостаток биполярного транзистора – большое потребление энергии и выделение тепла.

  • Слайд 6

    Полевой транзистор

    В качестве альтернативы был разработан полевой транзистор. Он представляет собой однополярный полупроводниковый прибор, выводы которого называются исток, сток, затвор. При подаче напряжения на затвор и сток( или соответственно исток) носители заряда, электроны в областях с проводимостью n- типа (или дырки в областях с проводимостью p- типа), проходят через возникающий под затвором тонкий проводящий канал.

  • Слайд 7

    МОП - транзисторы

    Полевые транзисторы с изолированным затвором – МДМ(металл – диэлектрик – полупроводник). МОП- транзисторы более экономичны. Транзистор, изобретенный в 1948 г., лежит в основе всех современных микросхем и микропроцессоров. Его авторы- Уильям Шокли, Уолтер Браттейн, Джон Бардин получили Нобелевскую премию по физике в 1956 г.

  • Слайд 8

    Применение транзисторов в вычислительной технике

    Состояние транзистора, когда через коллектор течет большой ток, можно условно принять за 1, а малый – за 0. Вначале транзисторы изготовлялись как отдельные элементы и представляли собой цилиндры диаметром в десяток миллиметров с несколькими проволочными выводами.

  • Слайд 9

    ТЕХНОЛОГИЯ ИЗГОТОВЛЕНИЯ

    Полупроводниковая микросхема — все элементы и межэлементные соединения выполнены на одном полупроводниковом кристалле (например, кремния, германия, арсенида галлия). Плёночная микросхема — все элементы и межэлементные соединения выполнены в виде плёнок: толстоплёночная интегральная схема; тонкоплёночная интегральная схема. Гибридная микросхема — кроме полупроводникового кристалла содержит несколько бескорпусных диодов, транзисторов и(или) других электронных компонентов, помещённых в один корпус.

  • Слайд 10

    Классификация микросхем

    В СССР были предложены следующие названия микросхем в зависимости от степени интеграции (указано количество элементов для цифровых схем): Малая интегральная схема (МИС) — до 100 элементов в кристалле. Средняя интегральная схема (СИС) — до 1000 элементов в кристалле. Большая интегральная схема (БИС) — до 10000 элементов в кристалле. Сверхбольшая интегральная схема (СБИС) — до 1 миллиона элементов в кристалле. Ультрабольшая интегральная схема (УБИС) — до 1 миллиарда элементов в кристалле. Гигабольшая интегральная схема (ГБИС) — более 1 миллиарда элементов в кристалле. В настоящее время название ГБИС практически не используется (например, последние версии процессоров Pentium 4 содержат пока несколько сотен миллионов транзисторов), и все схемы с числом элементов, превышающим 10 000, относят к классу СБИС, считая УБИС его подклассом. Интегральная микросхема может обладать законченным, сколь угодно сложным, функционалом — вплоть до целого микрокомпьютера (однокристальный микрокомпьютер).

  • Слайд 11

    Корпуса микросхем

    Микросхемы выпускаются в двух конструктивных вариантах — корпусном и бескорпусном. Бескорпусная микросхема — это полупроводниковый кристалл, предназначенный для монтажа в гибридную микросхему или микросборку. Корпус — это часть конструкции микросхемы, предназначенная для защиты от внешних воздействий и для соединения с внешними электрическими цепями посредством выводов. Корпуса стандартизованы для упрощения технологического процесса изготовления изделий из разных микросхем. Число стандартных корпусов исчисляется сотнями. В российских корпусах расстояние между выводами измеряется в миллиметрах и наиболее часто это 2,5 мм или 1,25 мм. У импортных микросхем расстояние измеряют в дюймах, используя величину 1/10 или 1/20 дюйма, что соответствует 2,54 и 1,28 мм. В корпусах до 16 выводов эта разница не значительна, а при больших размерах идентичные корпуса уже несовместимы. В современных импортных корпусах для поверхностного монтажа применяют и метрические размеры: 0,8 мм; 0,65 мм и другие.

  • Слайд 12

    Вид обрабатываемого сигнала

    Все микросхемы подразделяют на две группы - аналоговые и цифровые. Аналоговые микросхемы предназначены для работы с непрерывными во времени сигналами. К их числу можно отнести усилители радио-, звуковой и промежуточной частот, операционные усилители, стабилизаторы напряжения и др. Для аналоговых микросхем характерно то, что входная и выходная электрические величины могут иметь любые значения в заданном диапазоне. В цифровых же микросхемах входные и выходные сигналы могут иметь один из двух уровней напряжения: высокий или низкий. В первом случае говорят, что мы имеем дело с высоким логическим уровнем, или логической 1, а во втором - с низким логическим уровнем, или логическим 0. В основу работы цифровых микросхем положена двоичная система счисления. В этой системе используются две цифры: 0 и 1. Цифра 0 соответствует отсутствию напряжения на выходе логического устройства, 1 - наличию напряжения. С помощью нулей и единиц двоичной системы можно записать (закодировать) любое десятичное число. Так, для записи одноразрядного десятичного числа требуются четыре двоичных разряда. Сказанное поясняется табл. 1.

  • Слайд 13

    В первом столбце таблицы (ее называют таблицей истинности) записаны десятичные числа от 0 до 9, а в последующих четырех столбцах - разряды двоичного числа. Видно, что число в последующей строке получается в результате прибавления 1 к первому разряду двоичного числа. С помощью четырех разрядов можно записать числа от 0000 до 1111, что соответствует диапазону чисел от 0 до 15 в десятичной системе. Таким образом, если двоичное число содержит N разрядов, то с его помощью можно записать максимальное десятичное число, равное 2^(N-1). По таблице также несложно заметить, как можно перевести число из двоичной системы в десятичную. Для этого достаточно сложить степени числа 2, соответствующие тем разрядам, в которых записаны логические 1. Так, двоичное число 1001 соответствует десятичному числу 9 (2^3 + 2^0). Двоичную систему счисления используют в большинстве современных цифровых вычислительных машин.

  • Слайд 14

    СПАСИБО ЗА ВНИМАНИЕ!

Посмотреть все слайды

Сообщить об ошибке