Презентация на тему "Вакуумные приборы" 11 класс

Презентация: Вакуумные приборы
Включить эффекты
1 из 15
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
2.5
2 оценки

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Скачать презентацию (0.85 Мб). Тема: "Вакуумные приборы". Предмет: физика. 15 слайдов. Для учеников 11 класса. Добавлена в 2016 году. Средняя оценка: 2.5 балла из 5.

Содержание

  • Презентация: Вакуумные приборы
    Слайд 1

    Вакуумные приборы

  • Слайд 2

    Вакуум

    Ва́куум (от лат. vacuum — пустота) — среда, содержащая газ при давлениях значительно ниже атмосферного. Различают два вида вакуума: Физический вакуум Технический вакуум

  • Слайд 3

    Технический вакуум

    На практике сильно разреженный газ называют техническим вакуумом. В макроскопических объёмах идеальный вакуум недостижим на практике, поскольку при конечной температуре все материалы обладают ненулевой плотностью насыщенных паров. Кроме того, многие материалы (в том числе толстые металлические, стеклянные и иные стенки сосудов) пропускают газы. В микроскопических объёмах, однако, достижение идеального вакуума в принципе возможно.

  • Слайд 4

    Физический вакуум

    Под физическим вакуумом в современной физике понимают полностью лишённое вещества пространство. Даже если бы удалось получить это состояние на практике, оно не было бы абсолютной пустотой. Квантовая теория поля утверждает, что, в согласии с принципом неопределённости, в физическом вакууме постоянно рождаются и исчезают виртуальные частицы: происходят так называемые нулевые колебания полей. В некоторых конкретных теориях поля вакуум может обладать нетривиальными топологическими свойствами, но не только, а также в теории могут существовать несколько различных вакуумов, различающихся плотностью энергии, и т. д.

  • Слайд 5

    Вакуумный насос

    Вакуумный насос — устройство, служащее для удаления (откачки) газов или паров до определённого уровня давления (технического вакуума).

  • Слайд 6

    Принцип работы

    Объёмные насосы осуществляют откачку за счёт периодического изменения объёма рабочей камеры. В основном они используются для получения предварительного разрежения. К ним относятся поршневые, жидкостно-кольцевые, ротационные (вращательные). Наибольшее распространение в вакуумной технике получили вращательные насосы.

  • Слайд 7
  • Слайд 8

    Вакуумметр

    Вакуумме́р — вакуумный манометр, прибор для измерения давления разреженных газов.

  • Слайд 9

    Турбомолекулярный насос

    Турбомолекулярный насос - один из видов вакуумных насосов, служащий для создания и поддержки высокого вакуума. Действие турбомолекулярного насоса основано на сообщении молекулам откачиваемого газа дополнительной скорости в направлении откачки вращающимся ротором. Ротор состоит из системы дисков. Скорость вращения ротора - десятки тысяч оборотов в минуту. Для работы требует применения форвакуумного насоса.

  • Слайд 10

    Гиротрон

    Гиротрон — электровакуумный СВЧ прибор, с электронным пучком, вращающимся с циклотронной частотой в сильном магнитном поле. Представляет собой разновидность мазера на свободных электронах. Одним из применений является нагрев плазмы в установках термоядерного синтеза с магнитным удержанием плазмы.

  • Слайд 11

    Клистрон

    Клистрон — электровакуумный прибор, в котором преобразование постоянного потока электронов в переменный происходит путём модуляции скоростей электронов электрическим полем СВЧ (при пролёте их сквозь зазор объёмного резонатора) и последующей группировки электронов в сгустки (из-за разности их скоростей) в пространстве дрейфа, свободном от СВЧ поля.

  • Слайд 12

    Клистроны подразделяются на 2 класса: пролётные и отражательные. В пролётном клистроне электроны последовательно пролетают сквозь зазоры объёмных резонаторов. В простейшем случае резонаторов 2: входной и выходной. Дальнейшим развитием пролётных клистронов являются каскадные многорезонаторные клистроны, которые имеют один или несколько промежуточных резонаторов, расположенных между входным и выходным резонаторами. В отражательном клистроне используется один резонатор, через который электронный поток проходит дважды, отражаясь от специального электрода — отражателя.

  • Слайд 13

    Изобретатели клистрона

    Первые конструкции пролётных клистронов были предложены и осуществлены в 1938 Расселом Варианом и СигуртомВарианом. Отражательный клистрон был разработан в 1940 году Н. Д. Девятковым, Е. Н. Данильцевым, И. В. Пискуновым и независимо В. Ф. Коваленко.

  • Слайд 14

    Лампа бегущей волны

    Лампа бегущей волны (ЛБВ) — электровакуумный прибор, в котором для генерирования и/или усиления электромагнитных колебаний СВЧ используется взаимодействие бегущей электромагнитной волны и электронного потока, движущихся в одном направлении.

  • Слайд 15

    Лампа бегущей волны была впервые создана Рудольфом Компфнером (RudolfKompfner) в 1943 году (по другим сведениям в 1944). Лампы бегущей волны подразделяются на два класса: ЛБВ типа О и ЛБВ типа М. В приборах типа О происходит преобразование кинетической энергии электронов в энергию СВЧ поля в результате торможения электронов этим полем. Магнитное поле в таких лампах направлено вдоль направления распространения пучка и служит лишь для фокусировки последнего. В приборах типа М в энергию СВЧ поля переходит потенциальная энергия электронов, смещающихся в результате многократного торможения и разгона от катода к аноду. Средняя кинетическая энергия при этом остается постоянной. Магнитное поле в таких приборах направлено перпендикулярно направлению распространения пучка.

Посмотреть все слайды

Сообщить об ошибке