Презентация на тему "Задачи по физике"

Презентация: Задачи по физике
1 из 70
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
0.0
0 оценок

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Посмотреть презентацию на тему "Задачи по физике" в режиме онлайн. Содержит 70 слайдов. Самый большой каталог качественных презентаций по физике в рунете. Если не понравится материал, просто поставьте плохую оценку.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    70
  • Слова
    физика
  • Конспект
    Отсутствует

Содержание

  • Презентация: Задачи по физике
    Слайд 1

    Физика.«Две задачи».

    Постовалова Марина Владимировна. МОУ СОШ № 101. pptcloud.ru

  • Слайд 2

    Пояснительная записка.

    1.Данная работа включает в себя задачи ЕГЭ по физике. 2.Задачи сгруппированы по 2 из раздела. На первый взгляд они одинаковы, но решение и ответ различны... 3.Данная программа позволит учащимся лучше усвоить методы решения физических задач. 4.Работу можно использовать на уроках по физике, и в процессе подготовки в ЕГЭ. 5. Моя работа- иллюстрация того, что даже в решении самой простой задачи необходимо не просто подставлять числа в известные формулы, но, в первую очередь представлять задачу. 6.Представленные задачи учат учащихся проводить анализ физической системы и добиваться понимания особенностей ее поведения. 7.Подобную работу с задачами можно продолжать до бесконечности. Важнее принцип преподавания материала: сравнить, представить, подумать.

  • Слайд 3

    1.Путь и перемещение:

    1. Туристы прошли 3 км на север и 4 км на восток. Определите путь и перемещение туристов. 1) путь 7 км, перемещение 5 км 2) путь 7 км, перемещение 7 км 3) путь 5км, перемещение 5 км 4) путь 5 км, перемещение 7 км S 3км 4км

  • Слайд 4

    2.Путь и перемещение.

    Воздушный шар поднялся на высоту 300 метров, при этом его снесло восточным метром на 400метров. Определите путь и перемещение воздушного шара. 300м 400м S 1) путь 7 км, перемещение 5 км 2) путь 7 км, перемещение 7 км 3) путь 5км, перемещение 5 км 4) путь 5 км, перемещение 7 км

  • Слайд 5

    1.Относительность движения.

    1.Скорость катера 4м/с, скорость реки- 3м/с. Чему равна скорость катера относительно реки при переправе через реку за кратчайшее время? 1)3м/c 2) 4м/c 3) 5м/с 4) 7м/с Vкр Vкр Vр Vр Vкб

  • Слайд 6

    2.Относительность движения.

    Vкб Vк Vр Vр Vк 1.Скорость катера 5м/с, скорость реки- 3м/с. Чему равна скорость катера относительно реки при переправе через реку за кратчайшее время? 1) 3м/c 2) 4 м/с 3)5 м/с 4)7м/с

  • Слайд 7

    1.Уравнение движения.Путь и перемещение.

    Материальная точка движется вдоль оси ОХ согласно уравнению: Х= 6 - 4t + t2. Определите проекцию перемещения точки на ось ОХ за 5с. 1)5м 2)11м 3)13м 4)18м ( х(0)=6м; х(5)=11м; Sх=5м.) Х 6 11

  • Слайд 8

    1.Уравнение движения.Путь. Перемещение.

    Второй способ: Sх=-4t+t2, При t=5c Sх = -20+25= 5м

  • Слайд 9

    2.Уравнение движения. Путь и перемещение.

    Материальная точка движется вдоль оси ОХ согласно уравнению: Х= 6 -4t + t2. Найдите путь, пройденный точкой за 5с. Х 6 2 11 4 9 1)5м 2)11м 3)13м 4)18м

  • Слайд 10

    Графическое решение.

    Х= 6 - 4t + t2. V=-4+2t путь: S=4+9=13м Перемещение: Sх=-4+9=5м T, c v, м/c -4 -2 2 4 6 5 2 Sх Sх - +

  • Слайд 11

    1.Относительность движения.

    1. Два тела движутся вдоль оси ОХ навстречу друг другу. Скорость первого равна 20м/с, скорость второго -10м/с. Определите: второго относительно первого: 1)30м/c 2) -30м/с 3) – 10 м/c 4) 10 м/с V21= V2 – V1=10- 20 = -30 м/с Х 1 2 V1 V2 V21

  • Слайд 12

    2.Относительность движения. 1. Два тела движутся вдоль оси ОХ навстречу друг другу. Скорость первого равна 20м/с, скорость второго -10м/с. Определите: скорость первого относительно второго. 1)30м/c 2) -30м/с 3) – 10 м/c 4) 10 м/с V12= V1 – V2= 20- (-10) = 30 м/с Х 1 2 V1 V2 V12

  • Слайд 13

    1.Движение по окружности.

    На кольцевой гонке два автомобиля движутся так, что все время расположены на одной прямой, соединяющей их положения с центром окружности. Сравните величины: О 1 2 R 2R V1 V2 W1 W2 а1 а2 Т1 Т2 У1 у2

  • Слайд 14

    2.Движение по окружности.

    На кольцевой гонке два автомобиля движутся так, что все время расположены на одной прямой, соединяющей их положения с центром окружности. Найдите отношения величин: О 1 2 R 2R Т1/Т2 Т2/Т1 a2/а1 V2/v1 W2/w1

  • Слайд 15

    1.Движение по окружности.

    Два шкива разного радиуса соединены ременной передачей и приведены во вращательное движение. Как изменяются перечисленные в первом столбце величины при переходе из точки А к точке В, если ремень шкива не проскальзывает? 1) линейная скорость 2) угловая скорость 3) период вращения 4) частота А В В

  • Слайд 16

    1.Сила трения.

    На тело массой 4 кг, лежащее на горизонтальной плоскости, подействовали с горизонтальной силой, равной 6Н. Чему равна сила трения между телом и плоскостью, если коэффициент трения равен 0,2. 1) 0Н 2) 8Н 3) 6Н 4) 0,8Н F

  • Слайд 17

    2.Сила трения.

    На тело массой 4 кг, лежащее на горизонтальной плоскости, подействовали с горизонтальной силой, равной 9Н. Чему равна сила трения между телом и плоскостью, если коэффициент трения равен 0,2. 1) 0Н 2) 8Н 3) 6Н 4) 0,8Н F Fтр

  • Слайд 18

    1. Сила трения.

    Тело массой 1 кг движется по горизонтальной плоскости. На тело действует сила F= 10Н. Коэффициент трения между телом и плоскостью равен 0,4. Чему равен модуль силы трения, действующий на тело? 1) 3,4Н 2) 0,6Н 3) 4 Н 4) 6Н F Fтр

  • Слайд 19

    2. Сила трения.

    Тело массой 1 кг движется по горизонтальной плоскости. На тело действует сила F= 10Н под углом 30 к горизонту. Коэффициент трения между телом и плоскостью равен 0,4. Чему равен модуль силы трения, действующий на тело? 1) 3,4Н 2) 0,6Н 3) 4 Н 4) 6Н F V Fтр

  • Слайд 20

    1.Изменение импульса.

    Абсолютно упругий удар. Фотон , имеющий импульс Р, попадает на зеркальную поверхность и отражается от нее. Найдите модуль изменения импульса фотона. 1) р 2)2р 3) 0 4) 4р выполняется: 1. Закон сохранения импульса. 2. Закон сохранения механической энергии. Р1 Р2 Р = 2Р

  • Слайд 21

    2.Изменение импульса.

    Абсолютно неупругий удар. Фотон, имеющий импульс Р, попадает на поверхность тела и поглощается. Найдите модуль изменения импульса фотона. Р = Р Выполняется: 1. Закон сохранения импульса. Не выполняется: Закон сохранения механической энергии. Часть механической энергии переходит во внутреннюю энергию взаимодействующих тел. 1) р 2)2р 3) 0 4) 4р

  • Слайд 22

    1.Законы сохранения и абсолютно упругое столкновение.

    Два абсолютно упругих шарика массами 3кг и 4 кг движутся навстречу друг другу со скоростями 4м/c и 3 м/c соответственно. Определите скорость этих тел после абсолютно упругого столкновения. 1)1тело вправо, 2тело влево 2) 1тело влево, 1тело вправо 3) Оба тела остановятся 4) Продолжат двигаться в прежнем направлении m1 m2 V1 V2 m2 m1 U1 U2

  • Слайд 23

    2.Законы сохранения и абсолютно неупругое столкновение.

    Два абсолютно неупругих шарика массами 3кг и 4 кг движутся навстречу друг другу со скоростями 4м/c и 3 м/c соответственно. Определите скорость этих тел после абсолютно неупругого столкновения. m1 m2 V1 V2 m2 m1 U 1)1тело вправо, 2тело влево 2) 1тело влево, 1тело вправо 3) Оба тела остановятся 4) Продолжат двигаться в прежнем направлении

  • Слайд 24

    1.Законы сохранения и абсолютно неупругое столкновение.

    Абсолютно неупругий шарик массой 3кг движущийся со скоростью 4м/c, сталкивается с таким же неподвижным шариком. Определите скорость этих тел после абсолютно неупругого столкновения. m1 m1 V1 m2 m1 U 1)1тело вправо, 2тело влево 2) 1тело влево, 1тело вправо 3) Оба тела остановятся 4) Продолжат двигаться в прежнем направлении

  • Слайд 25

    1.Законы сохранения и абсолютно упругое столкновение.

    Абсолютно упругий шарик массой 3кг движущийся со скоростью 4м/c, сталкивается с таким же неподвижным шариком. Определите скорость этих тел после абсолютно неупругого столкновения. 1)1тело вправо, 2тело влево 2) 1тело влево, 1тело вправо 3) Оба тела остановятся 4) Продолжат двигаться в прежнем направлении m1 m1 V1 m2 m1 U1

  • Слайд 26

    1.Работа. Центр тяжести .

    1.Тело массой m подняли на высоту h. Найдите работу, которую необходимо для этого совершить. ( А=mqh) h

  • Слайд 27

    2.Работа. Центр тяжести.

    1.Тело массой m и длиной h из горизонтального положения подняли и поставили вертикально. Определите работу, которую необходимо совершить для этого. ( A=mqh/2) h/2

  • Слайд 28

    1.Закон сохранения энергии.

    Тело массой 50 кг соскальзывает по наклонной плоскости с высоты 5м. Найдите скорость тела у основания наклонной плоскости. 1) 10м/c 2) 2 м/c 3) 20 м/с 4) 100м/с h

  • Слайд 29

    2.Закон сохранения энергии.

    Тело массой 50 кг соскальзывает по наклонной плоскости с высоты 5м и у подножья приобретает скорость 2м/с. Найдите работу силы трения. 1) 2400 Дж 2) 2500Дж 3) 100Дж 4) 0 Дж h

  • Слайд 30

    1.Работа и изменение кинетической энергии.

    Для того, чтобы увеличить скорость тела от 0 до v потребовалось совершить работу А. Какую работу необходимо совершить, чтобы увеличить скорость от v до2v? А 2) 2А 3) 3А 4) 5А Теорема о кинетической энергии: А = Е к

  • Слайд 31

    2.Работа и изменение потенциальной энергии.

    Для того, чтобы растянуть пружину от 0 до Х требуется совершит работу А. Какую работу требуется совершить, чтобы растянуть пружину от Х до 2Х ? 1)А 2) 2А 3) 3А 4) 4А 1 способ: 2 способ: А= - Ер х F Х 2Х А2 А1

  • Слайд 32

    1.Уравнение Менделеева- Клапейрона.

    Масса газа меняется: Давление 3 молей водорода в сосуде при температуре 300К равно Р1. Каково давление 1 моль водорода в этом сосуде при вдвое большей температуре? 1) 3/2Р1 2) 2/3 P1 3) 1/6 P1 4) 6P1 Р1V1=v1RT1 Р2V1=v2R2T1P13 300 P21 600 P2=2/3P1

  • Слайд 33

    2.Уравнение Клапейрона.

    Масса газа не меняется. Абсолютная температура и объем одного моля идеального газа увеличились в три ра за. Как изменилось при этом давление газа? Уменьшилось в три раза Увеличилось в три раза Не изменилось Для ответа не хватает данных P1V1 P2V2 T1 T2

  • Слайд 34

    1.Изопроцессы.

    Как изменится давление данного количества идеального газа при переходе из состояния 1 в состояние 2? 1) увеличится 2) уменьшится 3) не изменится V T 1 2

  • Слайд 35

    2.Изопроцессы.

    Как изменится давление данного количества идеального газа при переходе из состояния 1 в состояние 2? V T 1 2 P1 P2 T1=T2 V2 V1 P2? P1 V2 V1 1) увеличится 2) уменьшится 3) не изменится

  • Слайд 36

    График изопроцесса.

    1.Графики изопроцесса в осях (P,T), 2.График изопроцесса в осях (P, t). P T P t ? 1. 2.

  • Слайд 37

    1 Закон термодинамики.

    На р-Т диаграмме показан процесс изменения состояния идеального одноатомного газа. Газ отдает 50кДж тепла. Работа внешних сил равна 1) 0 кДж 2) 25 кДж 3) 50 кДж 4) 100кДж Т Р Р0 2Р0 1 2

  • Слайд 38

    На р-V диаграмме показан процесс изменения состояния идеального одноатомного газа. Газ получает 50кДж тепла. Работа внешних сил равна 1) 0 кДж 2) 25 кДж 3) 50 кДж 4) 100кДж V Р Р0 2Р0 1 2

  • Слайд 39

    1.Напряженность, сила.

    В сторонах квадрата расположены точечные положительные заряды. В какую сторону направлена напряженность электростатического поля в центре квадрата? 1)вправо 2) влево 3)вниз 4) вверх 1 2 3 4 Е 1,3 2,4

  • Слайд 40

    2.Напряженность. Сила.

    В сторонах квадрата расположены точечные заряды. В центр квадрата поместили точечный положительный заряд. Определите направление равнодействующей сил, действующих на точечный заряд в центре квадрата. F 1 2 3 4 2,4 1,3 1)вправо 2) влево 3)вниз 4) вверх

  • Слайд 41

    1.Диэлектрики и проводники в электростатическом поле.

    Два стеклянных кубика 1 и 2 сблизили вплотную и поместили в электрическое поле, напряженность которого направлена горизонтально влево. Затем кубики раздвинули и уже потом убрали электрическое поле. Какие заряды окажутся на разделенных кубиках? 1) 1-положительный, 2- отрицательный 2) 1-отрицательный, 2- положительный 3) Оба отрицательные 4) оба нейтральные 1 2 Е 1 2

  • Слайд 42

    2.Диэлектрики и проводники в электростатическом поле.

    Пластинку из металла поместили в электростатическое поле, напряженность которого направлена горизонтально влево. Затем пластинку разделили на две части. Определите заряды на каждой части пластины. Е 1 2 1) 1-положительный, 2- отрицательный 2) 1-отрицательный, 2- положительный 3) Оба отрицательные 4) оба нейтральные

  • Слайд 43

    1.Электростатическая индукция.

    Будет ли взаимодействовать незаряженный металлический шар с заряженным телом? 1) будет притягиваться 2) будет отталкиваться 3) останется неподвижным

  • Слайд 44

    Будет ли взаимодействовать незаряженный шар из диэлектрика с заряженным телом? будет притягиваться 2) будет отталкиваться 3) останется неподвижным

  • Слайд 45

    1.Работа и изменение кинетической энергии тела.

    Отрицательный заряд перемещается в однородном электростатическом поле из точки А в точку В по траекториям 1, 2, 3. В каком случае работа сил электростатического поля наименьшая? 1) по траектории 1 2) по траектории 2 3) по траекториям 1,2 4) работа одинакова А В 1 2 3

  • Слайд 46

    2.Работа и изменение кинетической энергии тела.

    Частица летит из точки А в точку В между обкладками заряженного конденсатора по траекториям, указанным на рисунке. Сравните скорость, которую приобретет заряженная частица, переместившись по траекториям 1,2,3. А В 1 2 3 по траектории по траектории 2 3) по траекториям 1,2 4) скорость одинакова

  • Слайд 47

    1.Напряженность. Потенциал.

    Напряженность электростатического поля, созданного в точке А зарядом 1 по модулю равна 100В/м, а напряженность поля в той же точке, созданная зарядом 2, по модулю равна 200В/м. Напряженность поля в точке А, созданная двумя зарядами, по модулю равна: 1) 300В/м 2) 100В/м 3)может иметь любое значение от 100 до 300В/м. 1.заряды и точка А расположены на одной прямой: 1 2 1 2 1 2 А В A В А 100В/м 100B/м 300B/м

  • Слайд 48

    Напряженность электростатического поля, созданного в точке А зарядом 1 по модулю равна 100В/м, а напряженность поля в той же точке, созданная зарядом 2, по модулю равна 200В/м. Напряженность поля в точке А, созданная двумя зарядами, по модулю равна: 1) 300В/м 2) 100В/м 3)может иметь любое значение от 100 до 300В/м. 2.заряды и точка А расположены в одной плоскости: 1 2 1 2 В От 100В/м, до 300В/м

  • Слайд 49

    2.Напряженность. Потенциал.

    Потенциал электростатического поля, созданного в точке А зарядом 1 по модулю равен -100В, а потенциал поля в той же точке, созданный зарядом 2, по модулю равен 200В. Потенциал поля в точке А, созданный двумя зарядами, по модулю равен: 1) 100В 2) 200В 3) 300В 4) 0В 1 2 1 2 1 2 А В С В А В А

  • Слайд 50

    3.Напряженность. Потенциал. Сила.

    В точке А заряд 1 создает поле, модуль напряженности которого равен Е. Заряд 2 создает поле, модуль напряженности которого также равен Е. На заряд q, помещенный в точку А, действует сила, модуль которой Обязательно равен 0 Обязательно равен qE Обязательно равен 2q E Может быть любой величиной от 0 до 2q E

  • Слайд 51

    1.Работа электростатического поля.

    нейтрон Е А В С О Сравнить работу электростатического поля по перемещению Частицы по траектории ОА, ОБ, ОС.

  • Слайд 52

    2.Работа электростатического поля.

    электрон Е А В С О Сравнить работу электростатического поля по перемещению Частицы по траектории ОА, ОБ, ОС.

  • Слайд 53

    3.Работа электростатического поля.

    протон Е А В С О Сравнить работу электростатического поля по перемещению Частицы по траектории ОА, ОБ, ОС.

  • Слайд 54

    Конденсатор.

    Расстояние между обкладками плоского воздушного конденсатора уменьшают в 2 раза. Как изменится его энергия, если при этом он был постоянно подключен к источнику? 1)В 2 раза уменьшится 2) В два раза увеличится 3) Не изменится С 2С U=const

  • Слайд 55

    Расстояние между обкладками плоского воздушного конденсатора уменьшают в 2 раза. Как изменится его энергия, если при этом онзаряжен и отключен от источника? 1)В 2 раза уменьшится 2) В два раза увеличится 3) Не изменится С 2С q=const

  • Слайд 56

    1.Соединение проводников.

    Два проводника сопротивлением 2 Ом и 4 Ом соединены последовательно. На каком Резисторе выделится большая мощность? На первом больше в два раза На первом меньше в два раза На втором больше в 4 раза На втором меньше в 4 раза R1=2 Ом R2= 4 Ом

  • Слайд 57

    2.Соединение проводников.

    Два проводника 2 Ом и 4 Ом соединены параллельно. На каком проводнике выделяется большая мощность? На первом больше в два раза На первом меньше в два раза На втором больше в 4 раза На втором меньше в 4 раза R1=2 Ом R2=4 ОМ

  • Слайд 58

    1.Скорость света. Дисперсия.

    Сравнить скорость света в точках: VА Vв Vс А В С

  • Слайд 59

    2.Скорость света. Дисперсия.

    Сравнить скорость света в точках: А В С VА Vв Vс

  • Слайд 60

    1.Полное внутренне отражение.

    Световой луч переходит из одной прозрачной среды в другую. На рисунке показана граница раздела двух сред, падающий луч АО и преломленный луч ОВ. Можно ли, увеличивая угол падения, наблюдать явление полного внутреннего отражения? 1) нет 2) да 3) зависит от угла падения А В

  • Слайд 61

    2.Полное внутренне отражение.

    Световой луч переходит из одной прозрачной среды в другую. На рисунке показана граница раздела двух сред, падающий луч АО и преломленный луч ОВ. Можно ли, увеличивая угол падения, наблюдать явление полного внутреннего отражения? 1) нет 2) да 3) зависит от угла падения А В

  • Слайд 62

    1.Закон радиоактивного распада.

    Имеется 10000атомов радиоактивного изотопа йода, период полураспада которого 25 минут. Какое количество ядер изотопа останется через 50 минут? 1) 2500 2) 5000 3)7500 4) 10000 N t

  • Слайд 63

    2.Закон радиоактивного распада.

    Имеется 10000атомов радиоактивного изотопа йода, период полураспада которого 25 минут. Какое количество ядер изотопа распадется через 50 минут? 1) 2500 2) 5000 3)7500 4) 10000 N t

  • Слайд 64

    1.Электростатическая индукция.

    Легкую металлическую гильзу, подвешенную на шелковой нити, поместили рядом с металлической пластиной. Опишите движение гильзы, когда пластину подсоединили к клеммам высоковольтного выпрямителя, подав на пластину положительный заряд.

  • Слайд 65

    2.Электростатическая индукция.

    Легкую металлическую гильзу, подвешенную на шелковой нити, поместили рядом с металлическими пластинами. Опишите движение гильзы, когда пластины подсоединили к клеммам высоковольтного выпрямителя, подав на них заряды разных знаков.

  • Слайд 66

    3.Электростатическая индукция.

    Между двумя близко расположенными металлическими пластинами, укрепленными на изолирующих подставках, положили металлический шарик. Пластины подсоединили к клеммам высоковольтного выпрямителя и подали на них заряд разных знаков. Опишите дальнейшее движение шарика.

  • Слайд 67

    1.Фотоэффект.

    При освещении катода вакуумного фотоэлемента потоком монохроматического света происходит освобождение фотоэлектронов. Как изменится максимальная кинетическая энергия фотоэлектронов при увеличении интенсивности падающего света в 2 раза? 1) увеличится в 2 раза 2) уменьшится в два раза 3) увеличится более чем в два раза 4) не изменится

  • Слайд 68

    2.Фотоэффект.

    При освещении катода вакуумного фотоэлемента потоком монохроматического света происходит освобождение фотоэлектронов. Как изменится число вылетевших с поверхности металла электронов при увеличении интенсивности падающего света в 2 раза? 1) увеличится в 2 раза 2) уменьшится в два раза 3) увеличится более чем в два раза 4) не изменится

  • Слайд 69

    1.Фотоэффект.

    При освещении катода вакуумного фотоэлемента потоком монохроматического света происходит освобождение фотоэлектронов. Как изменится максимальная кинетическая энергия фотоэлектронов при уменьшении частоты падающего света в 2 раза? 1) увеличится в 2 раза 2) уменьшится в два раза 3) Уменьшится более чем в два раза 4) Уменьшится менее чем в два раза

  • Слайд 70

    2.Фотоэффект.

    При освещении катода вакуумного фотоэлемента потоком монохроматического света происходит освобождение фотоэлектронов. Как изменится максимальная кинетическая энергия фотоэлектронов при уменьшении длины волны падающего света в 2 раза? 1) увеличится в 2 раза 2) уменьшится в два раза 3) увеличится более чем в два раза 4) Увеличится менее, чем в два раза

Посмотреть все слайды

Сообщить об ошибке