Презентация на тему "Организация работы памяти"

Презентация: Организация работы памяти
Включить эффекты
1 из 20
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
5.0
1 оценка

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Смотреть презентацию онлайн с анимацией на тему "Организация работы памяти" по информатике. Презентация состоит из 20 слайдов. Для студентов. Материал добавлен в 2017 году. Средняя оценка: 5.0 балла из 5.. Возможность скчачать презентацию powerpoint бесплатно и без регистрации. Размер файла 0.54 Мб.

Содержание

  • Презентация: Организация работы памяти
    Слайд 1

    Организация работы памяти

  • Слайд 2

    Расположение слов в памяти

    В случае 32-разрядных слов их естественные границы располагаются по адресам 0, 4, 8 и т. д. При этом считается, что слова выровнены по адресам в памяти. Если говорить в общем, слова считаются выровненными в памяти в том случае, если адрес начала каждого слова кратен количеству байтов в нем Если длина слова равна 16 бит (2 байтам), выровненные слова начинаются по байтовым адресам 0, 2, 4, ..., а если она равна 64 бит (23, т. е. 8 байтам), то выровненные слова начинаются по байтовым адресам 0, 8, 16, ... . Не существует причины, по которой слова не могли бы начинаться с произвольных адресов. Такие слова называются невыровненными. Как правило, слова выравниваются по адресам памяти, но иногда этот принцип нарушается.

  • Слайд 3

    Доступ к числам, символам и символьным строкам

    Обычно число занимает целое слово, поэтому, для того чтобы обратиться к нему, нужно указать адрес слова, по которому оно хранится. Точно так же доступ к отдельно хранящемуся в памяти символу осуществляется по адресу содержащего его байта. Во многих приложениях необходимо обрабатывать строки символов переменной длины. Для доступа к такой строке нужно указать адрес байта, в котором хранится ее первый символ. Последовательные символы строки содержатся в последовательных байтах. Существует два способа определения длины строки. Первый из них заключается в использовании специальною управляющего символа, обозначающего конец строки и являющегося ее последним символом. Второй способ состоит в использовании отдельного слова памяти или регистра процессора, содержащего число, которое определяет длину строки в байтах.

  • Слайд 4

    Операции с памятью

    Как команды программ, так и данные, являющиеся операндами этих команд, хранятся в памяти. Для выполнения команды управляющие схемы процессора должны инициировать пересылку содержащего ее слова или слов из памяти в процессор. Операнды и результаты также должны пересылаться между памятью и процессором. Для выполнения команды программы необходимо произвести две операции с памятью: Load (также Read) — загрузка (или чтение); Store (или Write) — сохранение (или запись). Операция загрузки пересылает в процессор копию содержимого памяти по заданному адресу. При этом содержимое памяти остается неизменным. Для того чтобы начать операцию загрузки, процессор отсылает в память адрес и запрашивает содержимое памяти по этому адресу. Из памяти считываются соответствующие данные и пересылаются в процессор.

  • Слайд 5

    Операция сохранения пересылает элемент информации из процессора в память по заданному адресу, уничтожая предыдущие данные, хранившиеся по этому адресу. Для выполнения такой операции процессор отсылает в процессор. Информацию из одного слова или одного байта можно переслать между процессором и памятью за одну операцию. Процессор содержит небольшое количество регистров, вмещающих по одному слову. Эти регистры служат либо источниками, либо приемниками данных, пересылаемых в память и из памяти. Пересылаемый байт обычно располагается в младшей (крайней справа) позиции в регистре

  • Слайд 6

    Конкретные системы оперативной памяти.

    Память, хранящая обрабатываемые в текущее время данные и выполняемые команды (программу), называется основной памятью — RAM (RandomAccessMemory), т. е. память с произвольным доступом. Она составляет основу системной памяти. В ПК в большинстве случаях основная оперативная память строится на микросхемах динамического типа (DRAM — Dynamic Random Access Memory), где в качестве запоминающего элемента (ЗЭ) используется простейшая сборка, состоящая из одного транзистора и одного конденсатора. Основными причинами широкого применения этой памяти является высокая плотность интеграции (увеличение числа ЗЭ на чип и сокращение числа чипов, необходимых для одного модуля), малое потребление энергии (тратится минимум энергии на хранение одного бита, уменьшается потребляемая системой мощность, снижается стоимость) и т. д. Но имеются и недостатки: каждый ЗЭ представляет, по сути дела, разряжаемый со временем конденсатор, поэтому чтобы предотвратить потерю хранящейся в конденсаторах информации, микросхема RAM постоянно должна регенерироваться.

  • Слайд 7

    Статическая память

    Имеется другой вид памяти, который лишен этого недостатка. Эта память называется статической (Static RAM — SRAM), где в качестве ЗЭ используется так называемый статический триггер (состоящий из 4—6 транзисторов). Из-за сложности ЗЭ плотность упаковки микросхем SRAM меньше, чем для DRAM. Следовательно, если бы SRAM устанавливалась в качестве оперативной памяти, то это привело бы к увеличению быстродействия ПК, однако при этом существенно изменилась бы его стоимость, поскольку стоимость микросхемы SRAM значительно выше стоимости DRAM. Для повышения быстродействия в настоящее время применяются различные архитектурно-логические решения.

  • Слайд 8

    Основная память соединяется с процессором посредством адресной шины и шины данных. Каждая шина состоит из множества электрических цепей (линий или бит). Ширина (разрядность) адресной шины определяет, сколько адресов может быть в ОЗУ (адресное пространство), а шины данных — сколько данных может быть переданоза один цикл. Например, в 1985 г. процессор Intel 386 имел 32-разрядную адресную шину, что дало возможность поддерживать адресное пространство в 4 Гбайт. В процессоре Pentium (1993 г.) ширина шины данных была увеличена до 64 бит, что позволяет передавать 8 байт информации одновременно. Каждая передача данных между процессором и памятью называется циклом шины. Количество бит, которое процессор может передать за один цикл шины, влияет на производительность компьютера и определяет, какой тип памяти требуется.

  • Слайд 9

    Для описания характеристик быстродействия оперативной памяти применяются так называемые циклы чтения/записи (или временные схемы пакета). Дело в том, что при обращении к памяти на считывание или запись первого машинного слова расходуется больше тактов, чем на обращение к трем последующим словам. Так, для асинхронной SRAM чтение одного слова выполняется за 3 такта, запись — за 4 такта, чтение нескольких слов определяется последовательностью 3—2—2—2 такта, (что означает, что чтение 1-го элемента данных занимает 3 такта ЦП, включая 2 такта ожидания, а чтение последующих — по 2 временных такта), а запись — 4—3—3—3.

  • Слайд 10

    Динамическая память

    Динамическая память (DRAM) в современных ПК используется обычно в качестве оперативной памяти общего назначения, а также как память для видеоадаптера. Из применяемых в современных и перспективных ПК типов динамической памяти наиболее известныDRAM и FPM DRAM, EDO DRAM и т.д. Микросхема памяти этого типа представляет собой прямоугольный массив ячеек со вспомогательными логическими схемами, которые используются для чтения или записи данных, а также цепей регенерации, поддерживающих целостность данных. Массивы памяти организованы в строки (raw) и столбцы (column) ячеек памяти.

  • Слайд 11

    Каждая ячейка памяти имеет уникальное размещение, задаваемое пересечением строки и столбца. Цепи, поддерживающие работу памяти, включают: • усилители, считывающие сигнал, обнаруженный в ячейке памяти; • схемы адресации для выбора строк и столбцов; • схемы выбора адреса строки (Rowaddressselect — /RAS) и столбца (Columnaddressselect — /CAS), чтобы открывать и закрывать адреса строк и столбцов, а также начинать и заканчивать операции чтения и записи; • цепи записи и чтения информации; • внутренние счетчики или регистры, следящие за циклами регенерации данных; • схемы разрешения вывода (Outputenable — ОЕ).

  • Слайд 12

    SDRAM (Synchronous DRAM — синхронная динамическая память).

    Этот тип памяти существенно отличается от других тем, что использует тот факт, что большинство обращений к памяти являются последовательными и спроектирован так, чтобы передать все биты пакета данных как можно быстрее (когда начинается передача пакета, все последующие биты поступают с интервалом 10 не). SDRAM содержит в своем составе счетчик пакетов, который автоматически увеличивает адреса и обеспечивает быструю последовательную выборку. Контроллер памяти обеспечивает локализацию требуемого блока памяти с максимальной скоростью

  • Слайд 13

    Как видно из названия, этот тип памяти обеспечивает синхронизацию всех входных и выходных сигналов с системным таймером. Наибольшая скорость SDRAM в циклах процессора — 5—1 — 1 — 1 для пакета чтения четырех единиц информации (байт/ слово/двойное слово), что делает ее такой же быстродействующей; однако самое большое достоинство SDRAM — то, что она легко поддерживает частоту шины до 100 МГц.

  • Слайд 14
  • Слайд 15

    SDRAM PC100. Для материнских плат, поддерживающих внешние частоты в 100 МГц и выше, необходима память (SDRAM), которая сможет нормально и без сбоев работать с такими частотами, обеспечивая оптимальную скорость. Такие модули памяти должны иметь время доступа не более 8 нс, но самого быстродействия как такового недостаточно. Память, способная устойчиво работать на внешних частотах 100 МГц и выше, должна удовлетворять специальному стандарту — PC 100.

  • Слайд 16

    SDRAM PC133 — память, соответствующая стандарту РС133. Спецификация PC 133 SDRAM DIMM разработана группой компаний VIA Technologies, IBM, Products, NEC, Samsung . Было установлено, что память будет совместима с более ранними технологиями, стоить дешевле, хотя и не сможет работать на частотах выше 133 МГц. Память PC 133 — это лучшие образцы памяти стандарта РС100, ускоренные до 133 МГц. Спецификация РС133 почти ничем не отличается от РС100.. память РС133 может использоваться в графических станциях и других аналогичных системах.

  • Слайд 17
  • Слайд 18

    Следующим шагом в развитии Synchronous DRAM (SDRAM) может стать предложенная компанией Samsung DDR (DoubleDataRate) SDRAM или SDRAM II, в которой передача данных осуществляется по обоим фронтам тактовых импульсов одновременно, чем достигается удвоение скорости передачи при той же тактовой частоте. То есть DDR позволяет выполнить две операции доступа к данным из двух разных модулей, находящихся в одном банке памяти, за время одного обращения стандартной SDRAM благодаря более точной внутренней синхронизации. Это есть дальнейшее развитие принципа чередования данных для увеличения скорости доступа к ним.

  • Слайд 19

    Статическая память Статическая память (SRAM) обычно применяется в качестве кэш-памяти второго уровня (L2) для кэширования основного объема ОЗУ. Статическая память выполняется обычно на основе ТТЛ-, и по способу доступа к данным может быть как асинхронной, так и синхронной. Асинхронным называется доступ к данным, который можно осуществлять в произвольный момент времени. Асинхронная SRAM применялась на материнских платах для третьего — пятого поколений процессоров. Время доступа к ячейкам такой памяти составляло от 15 не (33 МГц) до 8 не (66 МГц). Синхронная память обеспечивает доступ к данным не в произвольные моменты времени, а одновременно (синхронно) с тактовыми импульсами. В промежутках между ними память может готовить для доступа следующую порцию данных.

  • Слайд 20

    В большинстве материнских плат пятого поколения используется разновидность синхронной памяти — синхронно-конвейерная SRAM (PipelinedBurst SRAM), для которой типичное время одиночной операции чтения/записи составляет 3 такта, а групповая операция занимает 3—1 — 1 — 1 такта при первом обращении и 1 — 1 — 1 — 1 при последующих обращениях, что обеспечивает ускорение доступа более чем на 25 %. SRAM в качестве элементарной ячейки использует так называемый статический триггер (схема которого состоит из нескольких транзисторов). Статический тип памяти обладает более высоким быстродействием и используется, например, для организации кэш-памяти.

Посмотреть все слайды

Сообщить об ошибке