Презентация на тему "Методы исследования ЦНС"

Презентация: Методы исследования ЦНС
Включить эффекты
1 из 24
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
1.0
1 оценка

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

"Методы исследования ЦНС" состоит из 24 слайдов: лучшая powerpoint презентация на эту тему с анимацией находится здесь! Средняя оценка: 1.0 балла из 5. Вам понравилось? Оцените материал! Загружена в 2017 году.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    24
  • Слова
    другое
  • Конспект
    Отсутствует

Содержание

  • Презентация: Методы исследования ЦНС
    Слайд 1

    Методы исследования ЦНС

    Выполнила Рябова Оксана группа 1561

  • Слайд 2

    Существуют следующие методы исследование функций ЦНС 1. метод перерезок ствола мозга на различных уровнях. Например, между продолговатым и спинным мозгом. 2. метод экстирпации (удаления) или разрушения участков мозга. 3. метод раздражения различных отделов и центров мозга. 4. анатомо-клинический метод. Клинические наблюдения за изменениями функций ЦНС при поражении ее каких-либо отделов с последующим патологоанатомическим исследованием. 5. электроэнцефалография – регистрация биопотенциалов мозга с поверхности кожи черепа. Методика разработана и внедрена в клинику Г. Бергером; 6. метод внутримозгового введения веществ с помощью микроионофореза ; 7. хронорефлексометрия – определение времени рефлексов. 8. компьютерная томография

  • Слайд 3

    Обозначения: 1 – пневмотаксический центр, 2 – апнейстический центр, 3 – вентральная группа дыхательных нейронов, 4 – дорзальная группа дыхательных нейронов, SC – верхние холмики четверохолмия, IC – нижние холмики четверохолмия, CP – средние мозжечковые ножки (перерезаны). Римскими цифрами обозначены последовательные поперечные полные перерезки ствола мозга. Справа показаны спирограммы, зарегистрированные после перерезок ствола мозга и блуждающего нерва. Метод перерезок ствола мозга на различных уровнях

  • Слайд 4

    Перерезка на уровне I. Удаление коры головного мозга и мозжечка не оказывает заметного влияния на глубину и частоту ритмического дыхания. Если перед этой перерезкой или после нее пересечь блуждающий нерв, то это приводит к уменьшению частоты и к увеличению глубины дыхания. Перерезка на уровне II. Полная поперечная перерезка по нижней границе среднего мозга и по верхней границе Варолиева моста так же заметно не влияет на глубину и частоту ритмического дыхания. Если перед этой перерезкой или после нее пересечь блуждающий нерв, то это приводит к уменьшению частоты и к увеличению глубины дыхания.

  • Слайд 5

    Перерезка на уровне III. Полная поперечная перерезка приблизительно на уровне между верхней третью и нижними двумя третями Варолиева моста, частота дыхания уменьшается, а глубина дыхания увеличивается. Эффект подобен тому, что наблюдался в первом эксперименте при пересечении блуждающих нервов. Однако если после перерезки на уровне III пересечь еще и блуждающие нервы, то можно наблюдать апнейстическое дыхание- это редкие затрудненные судорожные дыхательные движения с длительными паузами на высоте вдоха.

  • Слайд 6

    Перерезка на уровне IV. При перерезке ствола мозга между нижним краем моста и продолговатым мозгом можно наблюдать дыхание в нерегулярном ритме. Заметно увеличивается вариативность как частоты, так и глубины дыхания. Последующая перерезка блуждающего нерва не оказывает заметного влияния на проявления предшествующей перерезки. Это приводит к предположению, что афференты блуждающего нерва направляются главным образом к структурам моста, но не к структурам продолговатого мозга. Перерезка на уровне V. Перерезка мозга по нижней границе продолговатого мозга приводит к полной остановке дыхания (апное) в конце выдоха. Это свидетельствует о том, что условием осуществления внешнего дыхания является целостность, по крайней мере структур продолговатого мозга, управляющих дыханием.

  • Слайд 7

    Электрическая активность мозга в различных условиях его работы Покой Решение задачи

  • Слайд 8

    Значение полушарий у различных животных до И. П. Павлова изучали путем хирургического удаления их. Результаты удаления полушарий большого мозга птиц и собак показали, что вегетативные функции: кровообращение, дыхание, пищеварение и др., существенно не нарушаются. Нарушается его связь с внешней средой. На непосредственно действующие раздражители - укол булавкой, раздражение слизистой оболочки рта пищей - возникает вполне адекватная реакция: лапа отдергивается, пища проглатывается, т. е. у животного сохраняются врожденные безусловные рефлексы. Безвозвратно утрачиваются все приобретенные реакции поведения, все выработанные в процессе индивидуальной жизни условные рефлексы. Метод экстирпации (удаления) или разрушения участков мозга

  • Слайд 9

    Метод раздражения позволил установить в коре следующие зоны: двигательные (моторные), чувствительные (сенсорные) и немые, которые теперь называют ассоциативными. Метод раздражения различных отделов и центров мозга

  • Слайд 10

    Двигательные зоны коры.Движения возникают при раздражении коры в области предцентральной извилины. Электрическое раздражение верхней части извилин вызывает движение мышц ног и туловища, средней - рук, нижней - мышц лица. Показаны проекции частей тела человека на область коркового конца двигательного анализатора

  • Слайд 11

    Сенсорные зоны коры.Искоренение различных участков коры у животных установить локализации сенсорных (чувствительных) функций. Затылочные доли оказались связанными со зрением, височные - со слухом. Зрительная зона коры находится в затылочной доле. При раздражении ее возникают зрительные ощущения - вспышки света; удаление ее приводит к слепоте. Удаление зрительной зоны на одной половине мозга вызывает слепоту на одной половине каждого глаза, так как каждый зрительный нерв делится в области основания мозга на две половины (образует неполный перекрест), одна из них идет к своей половине мозга, а другая - к противоположной. Показаны проекции частей тела человека на область коркового конца анализатора

  • Слайд 12

    Сенсорные зоны коры При повреждении наружной поверхности затылочной доли не проекционной, а ассоциативной зрительной зоны зрение сохраняется, но наступает расстройство узнавания (зрительная агнозия). Больной, будучи грамотным, не может прочесть написанное, узнает знакомого человека после того, как тот заговорит. Способность видеть - это врожденное свойство, но способность узнавать предметы вырабатывается в течение жизни. Бывают случаи, когда от рождения слепому возвращают зрение уже в старшем возрасте. Он еще долгое время продолжает ориентироваться в окружающем мире на ощупь. Проходит немало времени, пока он научится узнавать предметы с помощью зрения. Функция слуха обеспечивается точными долями больших полушарий. Раздражение их вызывает простые слуховые ощущения. Удаление обеих слуховых зон вызывает глухоту, а одностороннее удаление понижает остроту слуха. При повреждении участков коры слуховой зоны может наступить слуховая агнозия: человек слышит, но перестает понимать значение слов. Родной язык становится ему так же непонятен, как и чужой, иностранный, ему незнакомый. Заболевание носит название слуховой агнозии.

  • Слайд 13

    Электроэнцефалография (ЭЭГ) метод электрофизиологического исследования функционального состояния головного мозга, основанный на регистрации его электрической активности. Играет существенную роль в диагностике эпилепсии, опухолевых, сосудистых, воспалительных и дегенеративных заболеваний головного мозга, черепно-мозговой травмы, нарушений сна и бодрствования, коматозных состояний. Отсутствие регистрируемой с помощью Э. электрической активности головного мозга является важным объективным признаком смерти мозга. Э. широко используется в физиологии при исследовании нормального функционирования ц.н.с. Приборы для регистрации электрической активности головного мозга, электроэнцефалографы, имеют 8—16 и более усилительно-регистрирующих блоков (каналов), позволяющих одномоментно регистрировать биоэлектрические потенциалы от соответствующего числа пар электродов. Электроды для Э. крепятся на голове обследуемого с помощью резиновых жгутов или специальных шапочек, липкой ленты и др. симметрично относительно срединной сагиттальной линии головы по общепринятым схемам отведений . Исследование ведется в свето- и звукоизолированном помещении. Положение обследуемого — полулежа в удобном кресле. Электрофизиологический метод

  • Слайд 14
  • Слайд 15

    Схема расположения отводящих электродов не коже головы при электроэнцефалографии: буквами обозначены точки наложения электродов, соответствующие конкретным областям поверхности мозга, с которых ведется запись биопотенциалов (О — затылочные; Т — височные; Р — теменные; С — центральные; F — лобные; F — лобно-полюсные); четными цифрами обозначены точки наложения электродов, расположенные на правой половине головы; нечетными — на левой; точки, расположенные по средней линии (сагиттально), имеют индекс z.

  • Слайд 16

    В норме на ЭЭГ взрослого здорового человека выделяют два основных ритма электрической активности — альфа- и бета-ритм. Патологическим для взрослого бодрствующего человека является дельта- и тета-ритмы Различные физиологические ритмы электроэнцефалограмм: 1 — дельта (Δ)-ритм; 2 — тета (θ)-ритм: 3 — альфа (α)-ритм, 4 — бета (β)-ритм; 5 — гамма (γ)-ритм.

  • Слайд 17

    Электрокортикограмма больного с опухолью левой лобно-теменной области головного мозга. В нижней части рисунка показано левое полушарие головного мозга; зона опухоли заштрихована, четырехугольником обозначена зона наложения электродов, цифрами обозначены номера отведений. В верхней части (рис. А) показана фоновая (спонтанная) электрокортикограмма: в зоне коры, окружающей опухоль (отведения 5—8, 7—8), выявляются патологические очаговые полиморфные Δ-волны (указаны квадратными скобками) В средней части (рис. Б) показана электрокортикограмма на фоне функциональной пробы (сжатие кистей в кулак); локальные медленные волны в перифокальной зоне коры (отведения 7—8, 5—8) остаются (указаны квадратными скобами) вдали от очага происходит синхронизация β-колебаний (отведения 1—2, 1—4 обозначены пунктирными скобками).

  • Слайд 18

    Электроэнцефалография больной П. до лечения. Электроэнцефалография больной П. через 1.5 мес после лечения.

  • Слайд 19

    Хронорефлексометрия Временем рефлекса называют время от момента нанесения раздражения до появления ответной реакции. Оно состоит из времени, которое затрачивается на возникновение возбуждения в рецепторе, времени прохождения по афферентному пути, времени передачи импульсом в ЦНС через последовательный ряд синапсов с афферентного пути на эфферентный, времени передачи возбуждения эфферентному пути и времени возбуждения рабочего органа. Время проведения возбуждения в ЦНС называется центральным временем рефлекса. Оно тем больше, чем сложнее рефлекторный акт (чем больше промежуточных нейронов участвует в его осуществлении, тем больше происходит синаптических переключений). Установлено, что время рефлекса зависит от силы раздражения: чем больше сила раздражения ,тем оно меньше, и, наоборот, чем слабее раздражение , тем больше время рефлекса .

  • Слайд 20

    Зависимость времени рефлекторной реакции от силы раздражителя.

  • Слайд 21

    Компьютерная томография  При компьютерной томографии исследуются в основном три зоны – голова и шея, грудная и брюшная полости. Компьютерный томограф представляет собой стол, входящий в куб с большим круглым окном. Внутри окна находится луч и матрица. Происходит исследование следующим образом. Пациент лежит на столе, который очень медленно перемещается внутри вращающегося кольца. На этом кольце с одного края находится рентгеновская трубка, а с другого цепочка очень чувствительных детекторов. Постепенно сканер продвигается вдоль тела человека. После полного оборота излучателя рентгеновских волн и детекторов вокруг остановившегося стола на экране соединенного с ними компьютера возникает срез исследуемого органа. Так срез за срезом собирается информация об этом органе и о его внутреннем содержимом.   

  • Слайд 22
  • Слайд 23
  • Слайд 24

    Спасибо за внимание.

Посмотреть все слайды

Сообщить об ошибке