Презентация на тему "Трансформаторы"

Презентация: Трансформаторы
Включить эффекты
1 из 29
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
5.0
2 оценки

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Смотреть презентацию онлайн с анимацией на тему "Трансформаторы". Презентация состоит из 29 слайдов. Материал добавлен в 2018 году. Средняя оценка: 5.0 балла из 5.. Возможность скчачать презентацию powerpoint бесплатно и без регистрации. Размер файла 0.46 Мб.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    29
  • Слова
    другое
  • Конспект
    Отсутствует

Содержание

  • Презентация: Трансформаторы
    Слайд 1

    Трансформаторы

  • Слайд 2

    Я еще не устал удивляться Чудесам, что есть на Земле: Телевизору, голосу раций, Вентилятору на столе. Самолеты летят сквозь тучи, Как до этих вещей могучих Домечтаться люди могли? Я вверяю себя трамваю, Я гляжу на экран кино, Эту технику понимая, Изумляюсь ей все равно. Ток по проволоке струится, Спутник ходит по небесам. Человеку стоит дивиться Человеческим чудесам!!! Все известно вокруг Тем не менее, На Земле еще много того, Что достойно порой удивления Твоего, и моего.

  • Слайд 3

    Это стихи Шефрана о создании человеческого разума, но в основе их лежат законы физики. Любому открытию сопутствует опыт, талант открывателя и даже случай. Если человек своим трудолюбием, упорством достигает истины в чем-либо, то это и есть открытие.

  • Слайд 4

    Уже второй век человечество использует электрический ток в промышленных масштабах. И все эти годы используется в основном переменный ток. В странах Европы и Америки наибольшее распространение получил ток, меняющий свое направление 100-120 раз в секунду. В России частота переменного тока 50 Гц. Логично предположить, что переменный ток, имеет какие то преимущества перед постоянным. Разные потребители электрического тока рассчитаны на разные напряжения. Так, большинство электробытовых приборов рассчитано на напряжение 27 и 220 В., промышленные электродвигатели на 200, 360 и 600 в.

  • Слайд 5

    Электрический ток никогда не получил бы такого широкого применения, если бы его нельзя было преобразовывать почти без потерь энергии. ЭДС мощных генераторов электростанций довольно велика. При передаче электроэнергии используется напряжение в сотни киловатт. Между тем на практике чаще всего нужно не слишком высокое напряжение. Преобразование переменного тока, при котором напряжение увеличивается или уменьшается в несколько раз практически без потери мощности ( при неизменной частоте тока), осуществляется с помощью трансформаторов.

  • Слайд 6

    Трансформатор преобразует переменный ток так: I↑U↓,U↑I↓, P и v не изменяются.Первый трансформатор был изобретен в 1878 году русским ученым П.Н.Яблочковым и усовершенствован в 1882 году другим русским ученым И.Ф.Усагиным.

  • Слайд 7

    Один из первых трансформаторов

  • Слайд 8

    Создатель трансформатора Павел Николаевич Яблочков –электротехник и изобретатель .Получил образование военного инженера,стал сапером, но вскоре вышел в отставку. Отставной поручик увлекался электротехникой. Изучать эту область техники можно было в Офицерских гальванических классах в Петербурге. Яблочков, вновь одевает военную форму и работает над проблемами, связанными с применением электричества в военном и гражданском деле. Он окончательно вышел в отставку и в 1873 году был назначен начальником телеграфной службы Московско-Курской железной дороги. Он организовал мастерскую, где проводил работы по электротехнике, которые легли в основу его изобретений в области электрического освещения, электрических машин, гальванических элементов и аккумуляторов.

  • Слайд 9

    К 1875 году относится одно из главных изобретений П.Н.Яблочкова – электрическая свеча, первая модель дуговой лампы. Идея создать электрическое освещение увлекла Яблочкова настолько, что он бросает работу и на свои скромные сбережения открывает в Москве лабораторию, где проводит работы по электротехнике. В 1878 году в Париже вскоре он пришел еще к одному гениальному решению: стал питать ''русский свет'' переменным током так, как это происходит и сегодня, изобрел трансформатор. В историю отечественной науки П.Н.Яблочков вошел, как автор ''свечи Яблочкова'', ''русского света'', ''северного света'', изобретатель трансформатора.

  • Слайд 10

    Устройство трансформатора

  • Слайд 11

    Трансформатор состоит: из замкнутого сердечника, изготовленного из специальной листовой трансформаторной стали. На нем располагаются две катушки с различным числом витков из медной проволоки. Одна из обмоток, называется первичной, она подключается к источнику переменного напряжения. Устройства, потребляющие электроэнергию, подключаются к вторичной обмотке, их может быть несколько.Принцип действия трансформатора. Принцип действия основан на законе электромагнитной индукции. При прохождении переменного тока по первичной обмотке в сердечнике возникает переменный магнитный поток, который возбуждает ЭДС индукции в каждой обмотке. Магнитное поле концентрируется внутри сердечника и одинаково во всех его сечениях. Мгновенное значение индукции Ei в любом витке и первичной, и вторичной обмоток одинаково: Е1 = Е2

  • Слайд 12

    Потери энергии при работе трансформатора: на нагревание обмоток; на рассеивание магнитного потока в пространство; на вихревые токи в сердечнике и на его перемагничивание.

  • Слайд 13

    Меры, принимаемые для уменьшения потерь: обмотка низкого напряжения делается большого сечения так, как по ней протекает ток большой силы; сердечник делают замкнутым, чтобы уменьшить рассеяние магнитного потока; сердечник делают пластинчатым, чтобы уменьшить вихревые токи.

  • Слайд 14

    Благодаря этим мерам КПД современных трансформаторов достигает 95-99%. Это означает, что практически вся энергия тока, проходящего по первичной обмотке трансформатора, превращается в энергию индукционного тока, возникающего во вторичной обмотке. Поскольку каждый виток первичной и вторичной обмоток пронизывает один и тот же магнитный поток, то в них возникают одинаковые ЭДС , равные по закону Фарадея для электромагнитной индукции, то: е1 = е2 = – Ф'

  • Слайд 15

    ЭДС Е1 и Е2 действующие во всей первичной или вторичной обмотках, равны произведению ЭДС в одном витке е1 или е2 на число витков в обмотке N1 и N2 Е1 = е1∙ N1 Е2 = е2∙ N2 Вывод: ЭДС, действующие в обмотках, прямо пропорциональны числу витков в них. E1∙N2=E2∙N1

  • Слайд 16

    Сила тока в первичной обмотке трансформатора во столько раз больше силы тока во вторичной обмотке, во сколько раз напряжение в ней больше напряжения в первичной обмотке: I1∙U1=I2∙U2 Если пренебречь падением напряжения на сопротивлениях обмоток, когда сопротивления малы, то можно записать отношение и для напряжений на обмотках трансформатора : U1∙N2=U2∙N1

  • Слайд 17

    Работа трансформатора на холостом ходу

  • Слайд 18

    Если первичную обмотку подключить к источнику переменного напряжения, а вторичную оставить разомкнутой, (этот режим трансформатора называют холостым ходом), то тока в ней не будет, а в первичной обмотке появится слабый ток, создающий в сердечнике переменный магнитный поток. Этот поток наводит в каждом витке обмоток одинаковую ЭДС, поэтому ЭДС индукции в каждой обмотке будет прямо пропорциональна числу витков в этой обмотке. Е ~ N

  • Слайд 19

    При разомкнутой вторичной обмотке напряжение на ее зажимах U2 будет равно наводимой в ней ЭДС Е2. U2 = Е2 В первичной обмотке ЭДС Е1 по числовому значению мало отличается от подводимого к этой обмотке напряжения U1, практически их можно считать равными. U1= Е1

  • Слайд 20

    Величина, показывающая, во сколько раз данный трансформатор изменяет напряжение переменного тока, называется коэффициентом трансформации. При подаче на первичную обмотку трансформатора какого-либо напряжения U1 на вторичной обмотке мы получаем на выходе U2. Оно будет больше первичного, если обмотка содержит больше витков, чем первичная. Итак, если N2 > N1, то U2 > U1, коэффициент трансформации k 1 и трансформатор называется понижающим.

  • Слайд 21

    Эти формулы справедливы, если ни первичная, ни вторичная обмотки не содержат активного сопротивления R. Первичная обмотка, как правило, не содержит такого сопротивления, а вторая обмотка может его содержать. Если она все же не содержит сопротивления или им можно пренебречь, то напряжение на выходе такой обмотки равно напряжению U2.

  • Слайд 22

    Когда вторичная обмотка трансформатора не имеет сопротивления R2 = 0, то кпд = 100% Апол = А затр, тогда U1 I1 t = U2 I2 t и U1 I1 = U2 I2 , то Р1 = Р2 ,I1∙U1=I2∙U2 и I1∙N1=I2∙N2следует, чтоследует

  • Слайд 23

    Работа трансформатора с нагрузкой.

  • Слайд 24

    Если во вторичную цепь трансформатора включить нагрузку, то во вторичной обмотке возникает ток. Этот ток создает магнитный поток, который согласно правилу Ленца, должен уменьшить изменение магнитного потока в сердечнике, что в свою очередь, приведет к уменьшению ЭДС индукции в первичной обмотке, поэтому ток в первичной обмотке должен возрасти, восстанавливая начальное изменение магнитного потока. При этом увеличивается мощность, потребляемая трансформатором от сети.

  • Слайд 25

    Если же вторичная обмотка трансформатора имеет сопротивление вторичной обмотки R2 (говорится о длине проводников из которых изготовлена обмотка, или о материале проводника, или о сечении и диаметре проводов обмотки), то на выходе вторичной обмотки напряжение U2' будет меньше расчетного напряжения U2 на величину падения напряжения U = I2 • R2 на этом сопротивлении из-за потерь энергии тока на джоулево тепло. На выход (на нагрузку) Rн ''пойдет'' меньшее напряжение: U2' = U2 –∆U = U2 – I2 • R2

  • Слайд 26

    Потери напряжения U находят по закону Ома для участка цепи: ∆U = I2 • R2, откуда

  • Слайд 27

    Напряжение на нагрузке по закону Ома для участка цепи сопротивлением , I2=U′2/R тогда U′2=I2∙R

  • Слайд 28

    Использование трансформаторов. Трансформаторы используются в технике и могут быть устроены очень сложно, однако незыблемым остается принцип их действия: '' изменяющееся магнитное поле, созданное переменным током в первичной обмотке, пронизывая витки вторичной обмотки, индуцирует в ней переменный ток той же частоты, но другого напряжения''. В современных мощных трансформаторах суммарные потери энергии не превышают 2–3%.

  • Слайд 29

    Трансформаторы используют: на заводах и фабриках при подаче напряжения к двигателям станков 380–660 В. при передаче электроэнергии по проводам от 100 до 1000В; для электросварки и электроплавки; в радиотехнике; и др.

Посмотреть все слайды

Сообщить об ошибке