Презентация на тему "Углеродные наноструктуры"

Презентация: Углеродные наноструктуры
1 из 21
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
5.0
1 оценка

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Посмотреть и скачать бесплатно презентацию по теме "Углеродные наноструктуры", состоящую из 21 слайда. Размер файла 2.73 Мб. Средняя оценка: 5.0 балла из 5. Каталог презентаций, школьных уроков, студентов, а также для детей и их родителей.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    21
  • Слова
    другое
  • Конспект
    Отсутствует

Содержание

  • Презентация: Углеродные наноструктуры
    Слайд 1

    Углеродные наноструктуры

  • Слайд 2

    Аллотропные формы углерода

    1. Алмаз 2. Графит 3. Графен 4. Нанотрубки 5. Фуллерен

  • Слайд 3

    Алмаз

  • Слайд 4
  • Слайд 5
  • Слайд 6

    Графит

    Графит, из чего сделаны грифели обычных карандашей, представляет собой стопку листов графена (рис. 22). Графены в графите очень плохо связаны между собой и могут скользить друг относительно друга. Поэтому, если провести графитом по бумаге, то соприкасающийся с ней лист графена отделяется от графита и остаётся на бумаге. Это и объясняет, почему графитом можно писать. Схематическое изображение трёх листов графена, находящихся друг над другом в графите.

  • Слайд 7

    Графен

      Графен – это одиночный плоский лист, состоящий из атомов углерода, связанных между собой и образующих решётку, каждая ячейка которой напоминает пчелиную соту (рис. 21). Расстояние между ближайшими атомами углерода в графене составляет около 0,14 нм. Схематическое изображение графена. Светлые шарики – атомы углерода, а стержни между ними – связи, удерживающие атомы в листе графена.

  • Слайд 8

    Нобелевская премия по физике за 2010 год была присуждена Андрею Гейму (AndreGeim) и Константину Новосёлову (KostyaNovoselov) из Манчестерского университета за новаторские эксперименты с графеном — двумерной формой углерода. Возглавляемая ими группа ученых была первой, кому удалось получить графен и идентифицировать его. Помимо этого, работы Гейма и Новосёлова внесли важный вклад в исследования необычных свойств и характеристик нового материала.

  • Слайд 9

    Графен

    Графит — сильно анизотропное вещество; он состоит из слабо взаимодействующих плоских слоев атомов углерода. То, что связь между атомными плоскостями слабая, можно наблюдать в процессе рисования карандашом на бумаге, когда слои графита легко смещаются и отсоединяются, оставляя на бумаге след. Предположим, что нам каким-то образом удалось «отщепить» от кристалла графита одну атомарную плоскость. Полученный единичный слой атомов углерода и есть графен (из-за плоской формы графен называют еще двумерной аллотропной формой углерода). Так что можно считать, что графит — это такой штабель графеновых плоскостей. Графен (верхний рисунок) — это 2D- (двумерный) строительный материал для других углеродных аллотропных модификаций. Он может быть свёрнут в 0D-фуллерен (слева), скручен в 1D-углеродную нанотрубку (в центре) или уложен в 3D-штабеля, образуя графит (справа). Рисунок из статьи A. K. Geimи K. S. NovoselovThe rise of graphene в Nature Materials

  • Слайд 10

    Свойства графена

    1. Электронные свойства новой формы углерода коренным образом отличаются от свойств трехмерных веществ. В частности, эксперименты подтвердили предсказания теоретиков о линейном законе дисперсии электронов. Но физикам было известно, что подобную зависимость энергии от импульса имеют и фотоны — безмассовые частицы, распространяющиеся в пространстве со скоростью света. Это означает, что электроны в графене, как и фотоны, не имеют массы, но движутся в 300 раз медленнее фотонов и имеют ненулевой заряд. (нулевая масса электронов наблюдается только в пределах графена. Если такой электрон удалось бы «вытянуть» из графена, то он приобрел бы свои обычные свойства.) 2. Линейный закон дисперсии электронов, а также то, что они являются фермионами (имеют полуцелый спин), вынуждает использовать для описания графена не уравнение Шредингера, как в физике твердого тела, а уравнение Дирака. Поэтому электроны в графене называют дираковскими фермионами, а определенные участки кристаллической структуры графена, для которых закон дисперсии линеен, — дираковскими точками. 3. Поскольку эти особенности поведения электронов в двумерном углероде присущи релятивистским частицам (со скоростью движения близкой к скорости света), появляется возможность экспериментальным образом смоделировать в графене некоторые эффекты из физики высоких энергий (например, парадокс Клейна), которые в обычных условиях исследуются в ускорителях заряженных частиц. Поэтому графен в шутку называют «настольным ЦЕРНом» (ЦЕРН — Европейский центр ядерных исследований, под его эгидой работает Большой адронныйколлайдер). 4. В макроскопическом масштабе линейный закон дисперсии приводит к тому, что графен является полуметаллом, то есть полупроводником с нулевой шириной запрещенной зоны, а его проводимость в нормальных условиях не уступает проводимости меди. Более того, его электроны чрезвычайно чувствительны к воздействию внешнего электрического поля, поэтому подвижность носителей заряда в графене при комнатной температуре теоретически может достигать рекордных значений — в 100 раз больше, чем у кремния, и в 20 раз больше, чем у арсенида галлия. Эти два полупроводника, наряду с германием, наиболее часто используются при создании различных высокотехнологичных устройств (интегральных схем, диодов, детекторов и т. п.), а поскольку быстрота и эффективность их работы определяется как раз подвижностью электронов, то чем больше эта величина, тем быстрее и производительнее работают устройства. 5. Графен установил рекорд и по теплопроводности. Измеренный коэффициент теплопроводности двумерного углерода в 10 раз больше коэффициента теплопроводности меди, которая считается отличным проводником теплоты. Интересно, что до открытия графена звание лучшего проводника тепла принадлежало другой аллотропной форме углерода — углеродной нанотрубке. Графен улучшил этот показатель почти в 1,5 раза.

  • Слайд 11

    Графен в приборах

    Ученые из Швейцарского федерального политехнического университета Лозанны (SwissEcolePolytechniqueFederaledeLausanne, EPFL), объединив два материала с уникальными электрическими характеристиками, графен и молибденит, создали опытные образцы ячеек флэш-памяти, которые демонстрируют многообещающие характеристики с точки зрения эффективности работы, размера, гибкости и потребления энергии. На основе молибденита ученые уже создали чипы простейших логических микросхем, а создание на основе этого материала флэш-памяти является большим шагом на пути продвижения этого материала в область практической электроники.

  • Слайд 12

    Углеродные нанотрубки

    Многие перспективные направления в нанотехнологиях связывают с углеродными нанотрубками. Углеродные нанотрубки – это каркасные структуры или гигантские молекулы, состоящие только из атомов углерода. Углеродную нанотрубку легко себе представить, если вообразить, что вы сворачиваете в трубку один из молекулярных слоёв графита – графен Один из способов воображаемого изготовления нанотрубки (справа) из молекулярного слоя графита (слева).

  • Слайд 13
  • Слайд 14

    Нанотрубкиобразуются, например, на поверхности угольных электродов при дуговом разряде между ними. При разряде атомы углероды испаряются с поверхности и, соединяясь между собой, образуют нанотрубки самого различного вида – однослойные, многослойные и с разными углами закручивания Диаметр однослойных нанотрубок, как правило, около 1 нм, а их длина в тысячи раз больше, составляя около 40 мкм. Они нарастают на катоде перпендикулярно плоской поверхности его торца. Происходит так называемая самосборка углеродных нанотрубок из атомов углерода. В зависимости от угла закручивания нанотрубки могут обладать высокой, как у металлов, проводимостью, а могут иметь свойства полупроводников. Углеродные нанотрубки прочнее графита, хотя сделаны из таких же атомов углерода, потому, что в графите атомы углерода находятся в листах. А каждому известно, что свёрнутый в трубочку лист бумаги гораздо труднее согнуть и разорвать, чем обычный лист. Поэтому-то углеродные нанотрубки такие прочные. Нанотрубки можно применять в качестве очень прочных микроскопических стержней и нитей, ведь модуль Юнга однослойной нанотрубки достигает величин порядка 1-5 ТПа, что на порядок больше, чем у стали! Поэтому нить, сделанная из нанотрубок, толщиной с человеческий волос способна удерживать груз в сотни килограмм. Сверху – схематическое изображение однослойной углеродной нанотрубки; ниже (сверху вниз) – двухслойная, прямая и спиральная нанотрубки.

  • Слайд 15

    Фуллерен

    Молекулы самого симметричного и наиболее изученного фуллерена, состоящего из 60 атомов углерода (C60), образуют многогранник, состоящий из 20 шестиугольников и 12 пятиугольников и напоминающий футбольный мяч (рис. 26). Диаметр фуллерена C60, составляет около 1 нм. Схематическое изображение фуллерена С60. За открытие фуллеренов американскому физику Р. Смоли, а также английским физикам Х. Крото и Р. Керлу в 1996 году была присуждена Нобелевская премия.

  • Слайд 16
  • Слайд 17
  • Слайд 18

    Электрические соединения с помощью УНТ

  • Слайд 19

    Транзистор на УНТ

    Транзистор на индивидуальной нанотрубке, который действует при комнатной температуре. Это трех электродное устройство, содержащее индивидуальную нанотрубку, расположенную на двух металлических наноэлектродах и подложке-затворе. Диаметр нанотрубки около 5 нм. По данным:

  • Слайд 20

    Преимущества нанотрубок

  • Слайд 21

    Элемент памяти на УНТ

    РТЛ СРАМ с УНТ полевым транзистором . Логические состояния память 0 и 1 показаны после того как переключение открылось?

Посмотреть все слайды

Сообщить об ошибке