Презентация на тему "Введение в кристаллографию"

Презентация: Введение в кристаллографию
Включить эффекты
1 из 16
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
0.0
0 оценок

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Посмотреть и скачать презентацию по теме "Введение в кристаллографию", включающую в себя 16 слайдов. Скачать файл презентации 1.87 Мб. Большой выбор powerpoint презентаций

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    16
  • Слова
    другое
  • Конспект
    Отсутствует

Содержание

  • Презентация: Введение в кристаллографию
    Слайд 1

    Введение в кристаллографию

    Лекция 1

  • Слайд 2

    Вопросы лекции

    Список рекомендованной литературы по курсу Краткая история кристаллографии Связь кристаллографии с другими естественными науками Основные разделы и задачи кристаллографии

  • Слайд 3

    Список рекомендуемой литературы

    а) основная литература: 1. Егоров–Тисменко, Юрий Клавдиевич. Кристаллография: учебник для студентов геологических специальностей вузов / Ю. К. Егоров-Тисменко, Г. П. Литвинская, Ю. Г. Загальская. —М.: Изд. МГУ, 1992. —288 с. 2. Егоров-Тисменко, Юрий Клавдиевич. Кристаллография и кристаллохимия: учебник для студентов вузов, обучающихся по спец "Геология" / Ю.К. Егоров-Тисменко.—Москва: КДУ, 2005.—587 с. 3. Чупрунов, Евгений Владимирович. Основы кристаллографии: учеб. для студентов вузов, обучающихся по физ. и хим. спец. / Е. В. Чупрунов, А. Ф. Хохлов, М. А. Фаддеев.—М.: Физматлит, 2004.—498, [2] с. 4. Задачи по кристаллографии: учеб. пособие для студентов вузов, обучающихся по физ. и хим. спец. / [Головачев В.П., Сафьянов Ю.Н., Чупрунов Е.В. и др.]; под ред. Е. В. Чупрунова, А. Ф. Хохлова.—М.: Физматлит, 2003.—191,[17] с. 5. Чупрунов, Евгений Владимирович. Основы кристаллографии: учеб. для студентов вузов, обучающихся по физ. и хим. спец. / Е.В. Чупрунов, А.Ф. Хохлов, М.А. Фаддеев.—Москва: Физматлит, 2006.—498, [2] с.

  • Слайд 4

    Дополнительная литература

    1. Чупрунов, Евгений Владимирович. Кристаллография: Учеб. для студентов вузов, обучающихся по физ. и хим. спец. / Е.В.Чупрунов, А.Ф.Хохлов, М.А.Фаддеев.—М.: Изд-во Физ.-мат. лит., 2000.—496с.: 2. Бокий Г. Б. Кристаллохимия / Г. Б. Бокий.—Изд. 3-е, перераб. и доп..—Москва: Наука, 1971.—400 с. 3. Шаскольская Марианна Петровна. Кристаллография: Учебник для втузов / М. П. Шаскольская.—Изд. 2-е, перераб. и доп..—Москва: Высшая школа, 1984.—375с. 4. Шаскольская, Марианна Петровна. Кристаллография: учебник для втузов / М. П. Шаскольская.—Москва: Высшая школа, 1976.—391с. 5. Загальская, Юдифь Герцевна. Геометрическая кристаллография.: учебное пособие / Ю.Г. Загальская, Г. П. Литвинская; Под ред. Н. В. Белов.—Москва: Изд-во Московского университета, 1973.—163с. 6. Загальская Юдифь Герцевна. Геометрическая микрокристаллография.: учебное пособие / Ю.Г. Загальская, Г.П. Литвинская; Под ред. Н. В. Белов.—М.: Изд-во Московского университета, 1976.—238 с. 7. Попов Г.М. Кристаллография: Учебн. для студ. геол. ин-тов и фак. / Г.М. Попов.—изд. 4-е, испр. и доп..—М.: Высш. шк., 1964.—370 с. 8. Попов, Георгий Михайлович. Кристаллография: Учеб. Для студентов геологических институтов и факультетов./ Г. М. Попов, И. И. Шафрановский. изд. 5-е, испр. и доп. —М.: Высшая школа, 1972. —352 с.

  • Слайд 5

    Краткая история кристаллографии

    Эмпирический этап (до начала XVI века) Период постепенного накопления знаний о форме, геометрических особенностях кристаллов минералов. Кристаллам минералов приписывались магические свойства с древности (амулеты и обереги) алмаз-защищает от врагов, горный хрусталь предотвращает от дурного сглаза и т.д. 428-348 г. До н.э. космогеническая геометрия Платона, базировавшаяся на пяти высокосимметричных правильных многогранниках. Чтобы уничтожить воду (икосаэдр 20 граней), необходимы 1 часть огня (тетраэдр 4 грани) и две части воздуха (2 октаэдра с 8 гранями) 20=4+2*8. Четыре элемента, из которых строится мир: Тетраэдр – огонь Октаэдр – воздух Икосаэдр – вода Куб –земля Додекаэдр -вселенная

  • Слайд 6

    В 1597 г. Иоганн Кеплер (1571-1630 гг.) опубликовал книгу «Гармония мира», в которой исходя из единого геометрического принципа , попытался рассчитать число орбит, их относительные размеры и характер расположения планет. Геометрию он считал «прообразом красоты мира».http://www.schillerinstitute.org/lar_related/2010/lyn_secret_economy.html Построение И.Кеплера – шесть сфер, соответствующих орбитам шести планет : Сатурна, Юпитера, Марса, Венеры и Меркурия, разделенные кубом, тетраэдром, додекаэдром, октаэдром и икосаэдром Самое основное свойство кристаллических тел – симметрия, находило свое применение в самых разных областях жизни человека: от понятия красивый человек (гармоничный) до строения вселенной…

  • Слайд 7

    Теоретический (объяснительный) - XVI - XIX века – период интенсивного теоретического исследования форм и выявления внутреннего строения кристаллов 1501-1576 гг.итальянский математик Дж.Кардано считал, что кристаллы рождаются, живут, болеют, стареют и погибают. Он попытался объяснить шестигранные призматические формы кристаллов горного хрусталя укладкой шарообразных частиц . 1611 г. Кеплер в своем трактате «О шестиугольных снежинках» высказал предположение о связи правильной шестиугольной формы снежинок с плоскостной укладкой шарообразных частиц вещества. Сравнивая снежинки разных видов он обратил внимание на то, что все лучи снежинок сходятся в одной точке, следовательно, по его предположению, в центре находится формообразующая сила.

  • Слайд 8

    В 1669 г. Н.Стенон сформулировал основные понятия о формировании кристаллов: «Рост кристаллов происходит не изнутри, как растений, но путем наложения на внешние плоскости кристалла мельчайших частиц, приносящихся извне жидкостью ». На реальных кристаллах кварца он вывел основной закон геометрической кристаллографии – закон постоянства углов: «Хотя кристаллы одного и того же вещества (минерала) могут иметь разную форму, углы между их соответственными гранями остаются неизменными». 1749 г. М.В.Ломоносов в своей диссертационной работе «О рождении и природе селитры» закон постоянства углов объяснил плотнейшей упаковкой шарообразных частиц. 1783 г. Фр. минералог Ж.Б.-Л. Роме-де-Лиль издал книгу под названием «Кристаллография, или Описание форм, присущих всем телам минерального царства», где предложил свой вариант основного закона кристаллографии: «Грани кристалла могут изменяться по своей форме и относительным размерам, но их взаимные наклоны постоянны и неизменны для каждого рода кристаллов».

  • Слайд 9

    1848 г. франц. кристаллограф А. Браве предложил 14 типов элементарных ячеек, из которых состоят пространственные решетки кристаллов. Центры тяжести молекул располагаются в кристалле в виде узлов пространственной решетки, характеризующейся трехмерной периодичностью. О.Браве ввел понятия об осях симметрии, плоскости симметрии, центре симметрии и дал определение симметричной фигуры

  • Слайд 10

    http://www.geowiki.fr/index.php?title=Ha%C3%BCy Гаюи открыл, что плоскости спайности, постоянны и имеют соотношение с наружной формой. Далее, он нашел весьма важный закон о рациональности разрезов по осям, который имеет значение для всего строения кристалла. К значительнейшим исследованиям Гаюиотносится и открытие закона симметрии, состоящего в том, что при изменении формы кристалла через комбинацию с другими формами все однородные части, ребра, углы, плоскости всегда изменяются одновременно и одинаковым образом.

  • Слайд 11

    1830 г. Нем.проф.минералогииИ.Ф.Гессель издает труд под названием «Кристаллометрия» где выводит 32 класса симметрии кристаллов. Труд не находит понимания в ученом мире. 1855 г. Свой вариант вывода 32 классов симметрии предлагает Е.С.Федоров 1867 г. А. В. Гадолин в своей работе «Вывод всех кристаллографических систем и их подразделений из одного общего начала» строго выводит 32 группы – совокупности элементов симметрии, которые могут существовать в кристаллических многогранниках. Эти группы он разбивает на кристаллографические системы - сингонии: триклинную, моноклинную, ромбическую, тетрагональную, гексагональную и кубическую. 1890 г. Е. С. Фёдоров и независимо от него нем. математик А. Шёнфлис в 1891г. строго математически вывели 230 пространственных групп симметрии – 230 способов размещения материальных частиц в кристаллическом пространстве

  • Слайд 12

    В 1894 г. П.Кюри сформулировал закон суперпозиции симметрии: в результате наложения нескольких явлений различной природы, каждое из которых обладает своей собственной симметрией, в одной и той же системе сохраняются лишь совпадающие элементы симметрии этих явлений. В природе встречаются объекты двух типов симметрии: все, что растет или развивается по вертикали, т.е. вверх относительно земной поверхности имеет ось симметрии – симметрию конуса; все, что растет или развивается параллельно или под углом к земной поверхности обладает плоскостью симметрии. Все, что находится на планете Земля находится в поле земного притяжения и имеет отпечаток его воздействия. Сила тяжести имеет симметрию конуса, включающую одну вертикальную ось симметрии и бесконечное количество вертикальных плоскостей симметрии в ней пересекающихся. Следовательно, у всего, что развивается вертикально, вектор роста совпадет с осью симметрии конуса, а у всего, что развивается горизонтально, вектор роста совпадет с одной из вертикальных плоскостей симметрии. Этот закон суперпозиции симметрии проявляется во внешней форме кристаллических тел. Форма образующихся кристаллов отражает условия роста кристаллов.

  • Слайд 13

    Прогностический период (современный) с XIX в. по настоящее время 1895 г. Открытие немецким физиком В.К.Рентгеном – Х-лучей, названных рентгеновскими. 1912 г. исследования дифракции рентгеновских лучей в кристаллах (нем. физик М. Лауэ, экспериментально подтвердили их периодическое решётчатое строение. Первые рентгенографические расшифровки атомные структуры кристаллов галита, алмаза, сфалерита и др., были осуществлены в 1913г. англ. физиками У. Г. Брэггом и У. Л. Брэггом. Уравнение Брэгга-Вульфа Лауэграмма ориентированного монокристалла берилла. Первичный пучок рентгеновских лучей направлен вдоль оси симметрии 2-го порядка. Монокристалл состоит из двух несколько разориентированных блоков, поэтому некоторые пятна двойные.

  • Слайд 14

    Дальнейшее изучение атомной структуры кристаллов связано с именами амер. учёного Л. Полинга, норв. учёного В. Гольдшмидта, англ. учёного Дж. Бернала и сов. учёного Н. В. Белова; исследование роста кристаллов и их физ. свойств — с именами нем. учёного В. Фохта, болг. учёного И. Н. Странского, сов. учёных Г. В. Вульфа, А. В. Шубникова и др. 1927 г. Открытие дифракции электронов от кристаллических областей легло в основу электронографических методов. С помощью их изучают тонкие пленки, тонкие игольчатые кристаллы, поверхности монокристаллов в отраженных лучах. XX век развитие методов оптической спектроскопии по изучению тонких особенностей состава и строения кристаллов на атомно-электронном уровне; Электронный парамагнитный резонанс, открытый Е.К.Завойским в 1944 г. в Казани, применяется для диагностирования в минералах примеси парамагнитных ионов переходных групп ; Ядерный магнитный резонанс позволяет обнаружить парамагнитные ионы в составе минерала и их концентрацию, получить сведения о структурном положении атомов, их координации, симметрии и силе кристаллических полей .

  • Слайд 15

    Связь кристаллографии с другими науками

    КРИСТАЛЛОГРАФИЯ МАТЕМАТИКА ГЕОЛОГИЯ ХИМИЯ ФИЗИКА ГЕОМЕТРИЧЕСКАЯ КРИСТАЛЛОГРАФИЯ, ТЕОРИЯ СИММЕТРИИ ГРУПП КРИСТАЛЛОХИМИЯ, КРИСТАЛЛОГЕНЕЗИС СТРУКТУРЫ ВЕЩЕСТВ ЖИДКИЕ КРИСТАЛЛЫ МИНЕРАЛОГИЯ: КРИСТАЛЛЫ МИНЕРАЛОВ ЗАКОНОМЕРНЫЕ СРОСТКИ КРИСТАЛЛОВ ИЗОМОРФИЗМ, ПОЛИМОРФИЗМ КРИСТАЛЛОФИЗИКА ДИФРАКЦИОННЫЕ МЕТОДЫ ФАЗОВЫЕ ПЕРЕХОДЫ ФИЗИКА ТВЕРДОГО ТЕЛА

  • Слайд 16

    Определение, Основные разделы и задачи кристаллографии

    Основные разделы кристаллографии Геометрическая (математическая) кристаллография Кристаллофизика Кристаллохимия Кристаллогенезис Основные задачи кристаллографии Установление закономерностей внешней и внутренней симметрии кристаллических многогранников Установление зависимости физических свойств кристаллов (электрических, оптических, механических и др.) от симметрии кристаллов Изучение структурных особенностей различных веществ (расположение атомов в структуре) Изучение процессов образования и роста кристаллов Кристаллография – это наука, изучающая внешнюю форму, внутреннее строение, физико-химические свойства и процессы образования (синтеза) кристаллов

Посмотреть все слайды

Сообщить об ошибке