Презентация на тему "Адиабатический процесс. Уравнение адиабаты"

Презентация: Адиабатический процесс. Уравнение адиабаты
Включить эффекты
1 из 8
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
0.0
0 оценок

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Посмотреть презентацию на тему "Адиабатический процесс. Уравнение адиабаты" в режиме онлайн с анимацией. Содержит 8 слайдов. Самый большой каталог качественных презентаций по физике в рунете. Если не понравится материал, просто поставьте плохую оценку.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    8
  • Слова
    физика
  • Конспект
    Отсутствует

Содержание

  • Презентация: Адиабатический процесс. Уравнение адиабаты
    Слайд 1

    Адиабатический процесс. Уравнение адиабаты

    При выводе основного уравнения молекулярно-кинетической теории идеальных газов (2.4) мы предполагали, что столкновения молекул газа со стенками являются абсолютно упругими. Однако стенки сосудов сами состоят из молекул, и хотя молекулы стенок не движутся свободно как молекулы газа, а колеблются около положений равновесия, их, все же нельзя считать неподвижными. Значит, столкновение молекул газа со стенкой это, в сущности, столкновение молекул газа с движущимися молекулами стенки.

  • Слайд 2

    А при таком столкновении, даже если считать его абсолютно упругим, энергия молекулы газа вполне может измениться. Почему же мы полагали, что энергия молекул не изменяется при столкновении? Дело в том, что мы считали, что газ находится в состоянии теплового равновесия со стенками – при ударах молекул о стенки происходит и перенос энергии от молекул газа к молекулам стенки, и обратный процесс – перенос энергии от молекул стенки к молекулам газа, причем оба эти процесса идут с одинаковой интенсивностью.

  • Слайд 3

    Поэтому, отскочившая от стенки молекула газа имеет «в среднем» такую же энергию, как и до удара. Но состояния равновесия может и не быть. Тогда энергия будет либо «утекать» из газа в стенки, либо, наоборот, переходить от стенок к газу. Процесс такого рода мы будем называть теплообменом, а переданную в процессе теплообмена энергию – теплом или количеством теплоты. Значит, в общем случае изменение внутренней энергии газа складывается из работы внешних сил (2.10) и количества теплоты , переданного газу: .

  • Слайд 4

    Может оказаться, что сжатие или расширение газа происходит так, что теплообмен отсутствует и количество теплоты . Это может быть либо в случае, когда газ помещен в особую, теплоизолирующую оболочку, либо когда сжатие (расширение) газа происходит так быстро, что теплообмен не успевает произойти. Процесс, при котором тепло не поглощается и не выделяется, называется адиабатическим.

  • Слайд 5

    Например, сжатие газа в звуковой волне или в цилиндре двигателя происходит достаточно быстро для того, чтобы эти процессы можно было с хорошей точностью считать адиабатическими. Найдем связь между давлением и объемом при адиабатическом процессе. Рассмотрим небольшое изменение объема газа в адиабатическом процессе – от до . Пусть давление газа изменилось от до . Тогда произведение изменилось на .

  • Слайд 6

    Из уравнения (2.9) , а для адиабатического процесса равно . Значит или . Отсюда . Проинтегрировав это уравнение, получим , где - постоянная интегрирования. Потенцируя это выражение, получаем такой закон: . (2.12) То есть, при адиабатическом процессе давление обратно пропорционально объему в степени . В связи с этим константу называют показателем адиабаты, а уравнение (2.12) – уравнением адиабаты идеального газа или уравнением Пуассона.

  • Слайд 7

    Рассмотрим теперь многоатомные газы. Молекулы таких газов могут не только двигаться поступательно, но и вращаться вокруг осей, проходящих через центр масс молекулы. Для двухатомной молекулы существует два независимых направления вращения (рис. 14), а для молекулы, состоящей из трех и более атомов количество независимых направлений вращения равно трем. Кроме того, каждая из этих молекул может двигаться поступательно в трех независимых пространственных направлениях. Эти независимые направления движения называют степенями свободы.

  • Слайд 8

    Более строго количество степеней свободы можно определить как число независимых координат, необходимых для однозначного определения положения молекулы в пространстве. Таким образом, двухатомная молекула имеет пять степеней свободы (три «поступательных» и две «вращательных»), а молекула, состоящая из трех и более атомов – шесть степеней свободы (три «поступательных» и три «вращательных»)[1]. Одноатомная молекула имеет только три «поступательные» степени свободы. [1] Мы пока не рассматриваем возможность того, что атомы, составляющие молекулу, могут совершать колебательные движения. Дело в том, что при внутренних колебаниях молекул существенную роль играют квантовые эффекты. Влияние «колебательных» степеней свободы мы обсудим в § 8.

Посмотреть все слайды

Сообщить об ошибке