Содержание
-
Интерференция
-
Интерференция волн ( от лат.inter-взаимно и fero – несу; inter – «между» и ferens – «несущий», «поражающий») - взаимное усиление или ослабление двух или нескольких волн при их наложении друг на друга, вследствие чего образуется интерференционная картина.
Когерентные волны – волны, имеющие одинаковую частоту и постоянную во времени разность фаз.
-
Интерференция световых волн
Интерференция – одно из ярких проявлений волновой природы света. Это интересное и красивое явление наблюдается при определенных условиях при наложении двух или нескольких световых пучков. Интенсивность света в области перекрытия пучков имеет характер чередующихся светлых и темных полос, причем в максимумах интенсивность больше, а в минимумах меньше суммы интенсивностей пучков.
-
При использовании белого света интерференционные полосы оказываются окрашенными в различные цвета спектра. С интерференционными явлениями мы сталкиваемся довольно часто: цвета масляных или бензиновых пятен на воде, радужные мыльные пузыри, окраска замерзающих оконных стекол, причудливые цветные рисунки на крыльях некоторых бабочек и жуков, перьях птиц, перламутр некоторых раковин – все это проявление интерференции света.
-
-
Первый эксперимент по наблюдение интерференции света в лабораторных условиях принадлежит И. Ньютону. Он наблюдал интерференционную картину, возникающую при отражении света в тонкой воздушной прослойке между плоской стеклянной пластиной и плосковыпуклой линзой большого радиуса кривизны. Интерференционная картина имела вид концентрических колец, получивших название колец Ньютона
-
Кольца Ньютона
Интерференция возникает при сложении волн, отразившихся от двух сторон воздушной прослойки. «Лучи» 1 и 2 – направления распространения волн; h – толщина воздушного зазора.
Кольца Ньютона в зеленом и красном свете
-
- Условие интерференционного максимума
Интерференционный максимум (светлая полоса) достигается в тех точках пространства, в которых Δ d= kλ
- Условие интерференционного минимума
Интерференционный минимум (темная полоса) достигается при Δ d = (2k + 1)λ / 2.
(k = 0, 1, 2, 3, ...)
-
Световая волна, падая на систему линзы – плоской пластины, частично отражается от нижней поверхности линзы, а частично – от поверхности пластины. Сложение двух отраженных волн и дает интерференционную картину. Если первая и вторая волны пробегают до точки наблюдения разные пути, причем «гребни» одной волны попадают на «впадины» другой, то в этой точке при интерференции волны ослабляют друг друга. Если же «гребни» волны совпадают, то волна усиливается. Значит, чтобы наблюдалось усиление света, какая-либо из волн должна пробежать расстояние, на любое целое число длин волн большее, чем другая (условие максимума); для ослабления требуется разница в целое число длин волн плюс еще полволны (условие минимума).
-
Ньютон не смог объяснить с точки зрения корпускулярной теории, почему возникают кольца, однако он понимал, что это связано с какой-то периодичностью световых процессов.
Исторически первым интерференционным опытом, получившим объяснение на основе волновой теории света, явился опыт Юнга (1802 г.).
-
В опыте Юнга свет от источника, в качестве которого служила узкая щель S, падал на экран с двумя близко расположенными щелями S1 и S2 (рис. 3.7.3). Проходя через каждую из щелей, световой пучок расширялся, поэтому на белом экране Э световые пучки, прошедшие через щели S1 и S2, перекрывались. В области перекрытия световых пучков наблюдалась интерференционная картина в виде чередующихся светлых и темных полос.
-
Юнг был первым, кто понял, что нельзя наблюдать интерференцию при сложении волн от двух независимых источников. Теория Юнга позволила объяснить интерференционные явления, возникающие при сложении двух монохроматических волн одной и той же частоты. Однако повседневный опыт учит, что интерференцию света в действительности наблюдать не просто. Если в комнате горят две одинаковые лампочки, то в любой точке складываются интенсивности света и никакой интерференции не наблюдается.
-
Применение интерференции
Интерференция света в современной науке и технике широко используется для прецизионных (весьма точных) измерений длин световых волн, показателя преломления газов и других веществ.
Приборы, действие которых основано на явлении интерференции, называются интерферометрами.
-
Интерференционные методы позволяют определить качество шлифовки линз, зеркал, что очень важно при изготовлении оптических приборов; с их помощью измеряются коэффициенты преломления веществ, в частности газов; измеряются весьма малые концентрации примесей в газах и жидкостях. В астрономии интерференционные методы позволяют оценить угловой диаметр звезд.
-
Просветление оптики
Многие из вас, наверное, обращали внимание на то, что объективы фотоаппаратов, биноклей и других оптических приборов «переливаются» сине-фиолетовой краской. Поскольку эти отблески от объективов похожи на цвета тонких пленок, то можно предположить, что мы здесь наблюдаем явление интерференции, и это действительно так.
-
Свет, проходя через линзу, частично отражается от её передней и задней поверхностей. При этом теряется от 8 до 10% энергии света. Если же объектив состоит из нескольких линз, то потери на отражение могут составить до 50%. Чтобы этого избежать, на поверхность линзы химическими методами наносят тонкую пленку, толщина которой и показатель преломления выбираются с таким расчетом, чтобы в отраженном свете возник интерференционный минимум. В результате в проходящем свете возникает интерференционный максимум, т.е. через линзу пройдет больше света, чем при отсутствии пленки. Таким образом, оптика «просветляется».
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.