Презентация на тему "Использование электрической энергии"

Презентация: Использование электрической энергии
1 из 18
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
4.0
2 оценки

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Посмотреть и скачать презентацию по теме "Использование электрической энергии" по физике, включающую в себя 18 слайдов. Скачать файл презентации 0.8 Мб. Средняя оценка: 4.0 балла из 5. Большой выбор учебных powerpoint презентаций по физике

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    18
  • Слова
    физика
  • Конспект
    Отсутствует

Содержание

  • Презентация: Использование электрической энергии
    Слайд 1

    Презентация

    Производство, передача и использование электрической энергии Подпорин Артем, 11 класс, Кураховская гимназия «Престиж» pptcloud.ru

  • Слайд 2

    План презентации

    Произвотство электроэнергии Типы электростанций Альтернативные источники энергии Передача электроэнергии Использование электроэнергии

  • Слайд 3

    Типы электростанций

    Подразделяют несколько видов электростанций: ТЭС ГЭС АЭС

  • Слайд 4

    ТЭС

    Тепловая электростанция (ТЭС), электростанция, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. На тепловых электростанциях химическая энергия топлива преобразуется сначала в механическую, а затем в электрическую. Топливом для такой электростанции могут служить уголь, торф, газ, горючие сланцы, мазут. Наиболее экономичными являются крупные тепловые паротурбинные электростанции Большинство ТЭС нашей страны используют в качестве топлива угольную пыль. Для выработки 1 кВт-ч электроэнергии затрачивается несколько сот граммов угля. В паровом котле свыше 90% выделяемой топливом энергии передается пару. В турбине кинетическая энергия струй пара передается ротору. Вал турбины жестко соединен с валом генератора.

  • Слайд 5

    ТЭС подразделяются на: Конденсационные (КЭС) Они предназначенные для выработки только электрической энергии. Крупные КЭС районного значения получили название государственных районных электростанций (ГРЭС). теплоэлектроцентрали (ТЭЦ) производящие кроме электрической тепловую энергию в виде горячей воды и пара.

  • Слайд 6

    ГЭС

    Гидроэлектрическая станция (ГЭС), комплекс сооружений и оборудования, посредством которых энергия потока воды преобразуется в электрическую энергию. ГЭС состоит из последовательной цепи гидротехнических сооружений, обеспечивающих необходимую концентрацию потока воды и создание напора, и энергетического оборудования, преобразующего энергию движущейся под напором воды в механическую энергию вращения, которая, в свою очередь, преобразуется в электрическую энергию. Напор ГЭС создается концентрацией падения реки на используемом участке плотиной, либо деривацией, либо плотиной и деривацией совместно.

  • Слайд 7

    Мощность ГЭС

    Так же ГЭС подразделяют на: Мощность ГЭС зависит от напора , расхода воды, используемого в гидротурбинах, и кпд гидроагрегата. По ряду причин (вследствие, например, сезонных изменений уровня воды в водоёмах, непостоянства нагрузки энергосистемы, ремонта гидроагрегатов или гидротехнических сооружений и т. п.) напор и расход воды непрерывно меняются, а, кроме того, меняется расход при регулировании мощности ГЭС. высоконапорные (более 60 м) средненапорные (от 25 до 60 м) низконапорные (от 3 до 25 м) Средние (до 25 МВт) Мощные (свыше 25 МВт) Малые (до 5 МВт)

  • Слайд 8

    Особое место среди ГЭС занимают:

    Гидроаккумулирующие электростанции (ГАЭС) Способность ГАЭС аккумулировать энергию основана на том, что свободная в энергосистеме в некоторый период времени электрическая энергия используется агрегатами ГАЭС, которые, работая в режиме насоса, нагнетают воду из водохранилища в верхний аккумулирующий бассейн. В период пиков нагрузки аккумулированная энергия возвращается в энергосистему Приливные электростанции (ПЭС) ПЭС преобразуют энергию морских приливов в электрическую. Электроэнергия приливных ГЭС в силу некоторых особенностей, связанных с периодичным характером приливов и отливов, может быть использована в энергосистемах лишь совместно с энергией регулирующих электростанций, которые восполняют провалы мощности приливных электростанций в течение суток или месяцев.

  • Слайд 9

    АЭС

    Тепло, которое выделяется в реакторе в результате цепной реакции деления ядер некоторых тяжёлых элементов, затем так же, как и на обычных тепловых электростанциях (ТЭС), преобразуется в электроэнергию. В отличие от ТЭС, работающих на органическом топливе, АЭС работает на ядерном горючем (в основе 233U, 235U, 239Pu). Установлено, что мировые энергетические ресурсы ядерного горючего (уран, плутоний и др.) существенно превышают энергоресурсы природных запасов органического, топлива (нефть, уголь, природный газ и др.).Кроме того, необходимо учитывать всё увеличивающийся объём потребления угля и нефти для технологических целей мировой химической промышленности, которая становится серьёзным конкурентом тепловых электростанций.

  • Слайд 10

    АЭСНаиболее часто на АЭС применяют 4 типа реакторов на тепловых нейтронах:

    графитоводные с водяным теплоносителем и графитовым замедлителем тяжеловодные с водяным теплоносителем и тяжёлой водой в качестве замедлителя водо-водяные с обычной водой в качестве замедлителя и теплоносителя граффито - газовые с газовым теплоносителем и графитовым замедлителем

  • Слайд 11

    АЭС

    Выбор преимущественно применяемого типа реактора определяется главным образом накопленным опытом в реактороносителе, а также наличием необходимого промышленного оборудования, сырьевых запасов и т. д. К реактору и обслуживающим его системам относятся: собственно реактор с биологической защитой, теплообменники, насосы или газодувные установки, осуществляющие циркуляцию теплоносителя, трубопроводы и арматура циркуляции контура, устройства для перезагрузки ядерного горючего, системы специальной вентиляции, аварийного расхолаживания и др. Для предохранения персонала АЭС от радиационного облучения реактор окружают биологической защитой, основным материалом для которой служат бетон, вода, серпантиновый песок. Оборудование реакторного контура должно быть полностью герметичным.

  • Слайд 12

    Альтернативные источники энергии.

    Энергия солнца Солнечная энергетика относится к наиболее материалоемким видам производства энергии. Крупномасштабное использование солнечной энергии влечет за собой гигантское увеличение потребности в материалах, а, следовательно, и в трудовых ресурсах для добычи сырья, его обогащения, получения материалов, изготовления гелиостатов, коллекторов, другой аппаратуры, их перевозки. Ветровая энергия Огромна энергия движущихся воздушных масс. Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты. Постоянно и повсюду на земле дуют ветры. Климатические условия позволяют развивать ветроэнергетику на огромной территории. Усилиями ученых и инженеров созданы самые разнообразные конструкции современных ветровых установок. Энергия земли Энергия Земли пригодна не только для отопления помещений, как это происходит в Исландии, но и для получения электроэнергии. Уже давно работают электростанции, использующие горячие подземные источники. Первая такая электростанция, совсем еще маломощная, была построена в 1904 году в небольшом итальянском городке Лардерелло. Постепенно мощность электростанции росла, в строй вступали все новые агрегаты, использовались новые источники горячей воды, и в наши дни мощность станции достигла уже внушительной величины-360 тысяч киловатт.

  • Слайд 13

    Энергия Солнца Энергия воздуха Энеригя земли

  • Слайд 14

    Передача электроэнергии

    Потребители электроэнергии имеются повсюду. Производится же она в сравнительно немногих местах, близких к источникам топливных и гидроресурсов. Поэтому возникает необходимость передачи электроэнергии на расстояния, достигающие иногда сотен километров. Но передача электроэнергии на большие расстояния связана с заметными потерями. Дело в том, что, протекая по линиям электропередачи, ток нагревает их. В соответствии с законом Джоуля — Ленца, энергия, расходуемая на нагрев проводов линии, определяется формулой: Q=I2Rt где R — сопротивление линии. При большой длине линии передача энергии может стать вообще экономически невыгодной. Для уменьшения потерь можно увеличить прощадьпоперечьного сечения проводов. Но при уменьшении R в 100 раз массу надо увеличить тоже в 100 раз. Такой расход цветного метала нельзя допускать. Поэтому потери энергии в линии снижают другим путем: уменьшением тока в линии. Например, уменьшение тока в 10 раз уменьшает количество выделившегося в проводниках тепла в 100 раз, т. е. достигается тот же эффект, что и от стократного утяжеления провода. Поэтому на крупных электростанциях ставят повышающие трансформаторы. Трансформатор увеличивает напряжение в линии во столько же раз, во сколько уменьшает силу тока. Потери мощности при этом невелики. Электрические станции ряда областей страны соединены высоковольтными линиями передач, образуя общую электросеть, к которой присоединены потребители. Такое объединение называется энергосистемой. Энергосистема обеспечивает бесперебойность подачи энергии потребителям не зависимо от их месторасположения.

  • Слайд 15

    Использование электроэнергии в различных областях науки

    Наука непосредственно влияет на развитие энергетики и сферу применения электроэнергии. Около 80% прироста ВВП развитых стран достигается за счет технических инноваций, основная часть которых связана с использованием электроэнергии. Все новое в промышленность, сельское хозяйство и быт приходит к нам благодаря новым разработкам в различных отраслях науки. Большая часть научных разработок начинается с теоретических расчетов. Но если в ХIХ веке эти расчеты производились с помощью пера и бумаги, то в век НТР (научно-технической революции) все теоретические расчеты, отбор и анализ научных данных и даже лингвистический разбор литературных произведений делаются с помощью ЭВМ (электронно-вычислительных машин), которые работают на электрической энергии, наиболее удобной для передачи ее на растояние и использования. Но если первоначально ЭВМ использовались для научных расчетов, то теперь из науки компьютеры пришли в жизнь. Электронизация и автоматизация производства - важнейшие последствия "второй промышленной" или "микроэлектронной« революции в экономике развитых стран. Очень бурно развивается наука в области средств связи и коммуникаций. Спутниковая связь используется уже не только как средство международной связи, но и в быту - спутниковые антенны не редкость и в нашем городе. Новые средства связи, например волоконная техника, позволяют значительно снизить потери электроэнергии в процессе передачи сигналов на большие расстояния. Созданы совершенно новые средства получения информации, ее накопления, обработки и передачи, в совокупности образующие сложную информационную структуру.

  • Слайд 16

    Использование электроэнергии в произвотстве

    Современное общество невозможно представить без электрификации производственной деятельности. Уже в конце 80-х годов более 1/3 всего потребления энергии в мире осуществлялось в виде электрической энергии. К началу следующего века эта доля может увеличиться до 1/2. Такой рост потребления электроэнергии прежде всего связан с ростом ее потребления в промышленности. Основная часть промышленных предприятий работает на электрической энергии. Высокое потребление электроэнергии характерно для таких энергоемких отраслей, как металлургия, алюминиевая и машиностроительная промышленность.

  • Слайд 17

    Использование электроэнергии в быту

    Электроэнергия в быту неотъемлемый помощник. Каждый день мы имеем с ней дело, и, наверное, уже не представляем свою жизнь без нее. Вспомните, когда последний раз вам отключали свет, то есть в ваш дом не поступала электроэнергия, вспомните, как вы ругались, что ничего не успеваете и вам нужен свет, вам нужен телевизор, чайник и куча других электроприборов. Ведь если нас обесточить навсегда, то мы просто вернемся в те давние времена, когда еду готовили на костре и жи ли в холодных вигвамах. Значимости электроэнергии в нашей жизни можно посветить целую поэму, настолько она важна в нашей жизни и настолько мы привыкли к ней. Хотя мы уже и не замечаем, что она поступает к нам в дома, но когда ее отключают, становится очень не комфортно.

  • Слайд 18

    Спасибо за внимание

Посмотреть все слайды

Сообщить об ошибке