Презентация на тему "Кинематика прямого и поступательного движения"

Презентация: Кинематика прямого и поступательного движения
Включить эффекты
1 из 7
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
0.0
0 оценок

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Скачать презентацию (0.09 Мб). Тема: "Кинематика прямого и поступательного движения". Предмет: физика. 7 слайдов. Добавлена в 2016 году.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    7
  • Слова
    физика
  • Конспект
    Отсутствует

Содержание

  • Презентация: Кинематика прямого и поступательного движения
    Слайд 1

    Лекция 2

  • Слайд 2

    1.  Параметры кинематики прямолинейного движения: пройденный путь, перемещение, средняя скорость, мгновенная скорость, ускорение. 2.  Прямая задача кинематики прямолинейного движения – определение положения либо пройденного пути в любой момент времени. 3.  Обратная задача кинематики поступательного движения – определение скорости в данный момент времени и ускорения в данный момент времени по закону движения.

  • Слайд 3

    КИНЕМАТИКА– изучает движение тел в пространствесо временем без учета причин, его вызывающих. Она оперирует такими величинами, как перемещение( ), пройденный путь(), время ( t ), скорость движения() и ускорение(). Вектор перемещения. Движение материальной точки характеризуется вектором перемещения (или просто перемещением), который равен изменению радиус-вектора движущейся точки за рассматриваемый промежуток времени. При переходе точки из положения 1 в положения 2 вектор перемещения Δr связан с радиус-векторами начального и конечного положения точки соотношением: Δr = r2 – r1 . Сравнивая две величины: скалярную – путь S и вектор перемещения Δr, можно сказать, что равенство пути и модуля вектора перемещения имеет место только в одном частном случае: когда прямолинейное движение происходит в одном направлении: Таким образом, радиус-вектор определяет положение материальной точки. Производная радиуса-вектора по времени определяет быстроту изменения положения материальной и направление ее движения.

  • Слайд 4

    1)Введем понятие средней скорости (Vср) – это величина, равная отношению перемещения Δr к тому промежутку времени, в течение которого это перемещение произошло: 2)За малый промежуток времени t точка проходит путь S, совершая перемещение Δr. При t0 отношения и практически перестают изменяться как по величине, так и по направлению и стремятся к определенному пределу который будет выражать вектор мгновенной скорости, т.е. скорости в данный момент времени.

  • Слайд 5

    Ускорение. При неравномерном движении необходимо знать закономерность, по которой скорость изменяется со временем. Для этого вводится величина, характеризующая быстроту изменения скорости со временем и называемая ускорением «».Пусть материальная точка переместилась за малый промежуток времени t из точки А, где она имела скорость V1 в точку В, где скорость V2 . Приращение скорости точки есть вектор , равный разности конечной и начальной скоростей: = 2-1.

  • Слайд 6

    По модулю величина ускорения равна Т.е. величина ускорения определяется первой производной скорости v по времени или второй производной пути по времени. Прямолинейное движение с постоянным ускорением называется равноускоренным (a = const). В этом случае мгновенное ускорение будет равно среднему ускорению за любой промежуток времени. И тогда В зависимости от поведения скорости со временем различают равноускоренное и «равнозамедленное» движения. Если а > 0, то движение равноускоренное. a > 0 скорость v возрастает. Направления в и совпадают. Если a

  • Слайд 7

    Зная зависимость V от t можно подсчитать путь, пройденный телом при равнопеременном движении Нахождение критериев движения ( V, a) – обратная задача кинематики поступательного движения. Прямая задача кинематики определяет положение тела или пройденный путь в любой момент времени при любых прямолинейных движениях:

Посмотреть все слайды

Сообщить об ошибке