Содержание
-
Оптика и атомная физика
Лектор: профессор кафедры оптики и биомедицинской физики СГУ, д.ф.м.н.,Dr. Habilit Проф. С.С.Ульянов pptcloud.ru
-
В основу настоящего конспекта лекций положен курс лекций по оптике, разработанный профессором кафедры оптики Н.К. Сидоровыми заведующим кафедры оптики и биомедицинской физики профессором В.В. Тучиным
-
Лекция 1
Введение
-
Оптикой называют учение о свете. В процессе исторического развития оптика неоднократно занимала лидирующие позиции в познании окружающего нас мира, создании методов и устройств для улучшения жизни человека. В настоящее время в связи с появлением лазеров и волоконной оптики оптика переживает очередной период бурного развития.
-
В свое время оптика сыграла решающую роль в познании строения атома, строения вещества. До сих пор оптическая спектроскопия является одним из наиболее эффективных средств изучения строения сложных биологических объектов, вновь синтезированных материалов, контроля загрязнения окружающей среды и пр.
-
В технике и технологии, особенно в микроэлектронике, существенную роль играют оптические методы контроля и измерения (неразрушающие методы), а также технологические процессы с использованием света (например, фотолитография).
-
Немного истории. Еще у древних людей в разных формах существовали два подхода к проблеме передачи энергии от Солнца к Земле светом: либо свет должен быть потоком частиц (типа летящей пули, среда не нужна), либо свет является системой волн (аналогично морской волне, акустическим волнам) и должен переносить энергию посредством среды.
-
Первая научная теория света была предложена Ньютоном во второй половине 17 века. Ньютон отстаивал корпускулярную теорию - теорию истечения световых частиц, летящих прямолинейно, согласно законам механики. Главные аргументы для Ньютона - это прямолинейность распространения света, отражение света, как механических частиц (угол падения равен углу отражения).
-
Против волновой теории - это необходимость наличия среды - эфира, что затрудняло бы движение планет. Преломление света Ньютон объяснял притяжением световых частиц преломляющей средой (силы притяжения действуют по нормали), теория дает, что скорость света в среде больше, чем в воздухе. У самого Ньютона, однако, были экспериментальные факты, не укладывающиеся в корпускулярную теорию - кольца Ньютона.
-
Основы волновой теории были заложены Гюйгенсом (хотя он не может считаться творцом волновой теории света). Всякий волновой процесс характеризуется пространственно-временной периодичностью, но Гюйгенс не считал световой импульс периодическим. Под волной он понимал сферическую поверхность, подобную волнам на воде.
-
Из идей Гюйгенса наибольшую ценность представляет общий принцип, носящий его имя и выдвинутый им для отыскания направления распространения света. При помощи принципа Гюйгенса легко объяснялись законы преломления и отражения.
-
Он гласит: каждая точка, до которой доходит световое возмущение, является, в свою очередь, центром вторичных волн; поверхность, огибающая эти вторичные волны, указывает положение фронта действительно распространяющейся волны.
-
В отличие от теории корпускул волновая теория дает, что скорость света в оптически более плотной среде 2 меньше, чем в оптически менее плотной 1. Для разрешения противоречия нужны были прямые измерения 1 и 2.
-
Интерференционные опыты Юнга и Френеля противоречили механистической теории корпускул (и). Было также обнаружено, что свет (подобно звуку) может отклоняться от прямолинейного распространения, огибать препятствия. Это явление дифракции, которое в полной мере не объясняется корпускулярной теорией.
-
Дальнейшее развитие волновая теория света получила в работах Эйлера и Ломоносова. Эйлер критиковал теорию истечения - Солнце испускает непрерывно и должно иссякнуть. Ломоносов - свет есть колебательное движение в эфире, и цвет определяется длиной волны, при поглощении света вес вещества не увеличивается. Развитие волновой теории - Юнг и Френель.
-
Волновая теория прекрасно объясняет явления дифракции, интерференции (и поляризации), законы отражения и преломления, и даже прямолинейное распространение света.
-
Шла постоянная борьба между сторонниками корпускулярной и волновой теорий. Решающий опыт - это прямое измерение скорости света в среде. В 1862 году Фуко произвел такой опыт, и оказалось, что в воде скорость света меньше, чем в воздухе. Волновая теория победила теорию истечения. Но насколько прочна была эта победа?
-
Все дифракционные опыты в том виде, как они производились со времен Юнга и Френеля, описывались волновым дифференциальным уравнением при данных граничных и начальных условиях
-
-
Само уравнение легко выводится в теории упругости сплошной среды. Если бы удалось независимо доказать существование среды - эфира, то волновая механистическая теория света была бы доказана. Два главных возражения - движение небесных тел, и необходимость (из-за большой частоты световых колебаний ~1015 с-1) высокой упругости, следовательно, и плотности среды (на уровне стали). Что доказывает немеханистическую природу света.
-
Волновая теория света получила неожиданную поддержку в области электрических и магнитных явлений, в области электродинамики, немеханистической теории Максвелла.Путем, совершенно независимым от классической механики, математическим обобщением опытных законов электромагнетизма Максвелл получил основные уравнения электродинамики, из которых однозначно вытекало волновое уравнение света.
-
На опыте было показано, что электрические и магнитные возмущения распространяются со скоростью света, при этом связь электрических и магнитных состояний такова, что в пространстве должны распространяться электромагнитные волны. Эти волны, предсказанные теоретически Максвеллом, были на опыте обнаружены Герцем.
-
В изолирующей среде распространяютсяэлектромагнитные волны; изменение скорости движущегося электрона (а движение заряда под действием сил всегда ускоренное) можно рассматривать как ослабление или усиление электрического тока; оно сопровождается ослаблением (или усилением) связанного с движущимся электроном магнитного поля.
-
Изменение магнитного поля индуцирует в окружающем пространстве переменное электрическое поле, которое образует вокруг себя свое магнитное поле и т.д.
-
Свет - электромагнитная волна. Это объясняло и взаимодействие света с веществом: движение заряженных частиц - излучение света; поглощение и рассеяние света - это взаимодействие электромагнитной волны с заряженными частицами внутри атома.
-
Волновая теория света на электромагнитной основе к концу 19 века была доказана, отпало главное возражение Ньютона о необходимости эфира для механической волновой теории. Казалось бы, это окончательная победа волновой теории.
-
Однако новые факты и осмысления хорошо известных фактов по взаимодействию света с веществом, а именно давление света, химическое действие света (например, выцветание ткани, которое идет постепенно), фотоэффект, поглощение света, рассеяние, флуоресценция, нагрев и пр. привели к тому, что гипотеза о корпускулах - квантах света - получила новое развитие.
-
В самом начале 20 века Макс Планк, рассматривая излучение нагретого тела, сделал замечательное открытие. Оказалось, что свет может поглощаться и излучаться лишь вполне определенными порциями энергии, названными квантами:
-
В 1887 году Герц открыл фотоэффект, который детально был изучен Столетовым. Энергия выбитых электронов не зависит от интенсивности, а определяется лишь частотой (длиной волны) света
-
Красная граница фотоэффекта. Нет объяснений со стороны волновой теории. Эйнштейн в 1905 году построил теорию фотоэффекта, согласно которой свет - это поток частиц квантов или фотонов с энергией h каждого, следовательно, энергия выбитых электронов пропорциональна частоте света, что и имеет место на опыте:
-
-
Квантовый характер светаможно наблюдать визуально - опыты Вавилова (малые интенсивности в затемненной комнате, т.к. в темноте глаз имеет чрезвычайно высокую чувствительность, наблюдается прерывистость потока, флуктуации, шумы).
-
Итак, снова возродилась идея квантовой природы света. Но это не было возвратом к ньютоновским представлениям. Это было формирование новых, более глубоких и сложных понятий. Налицо противоречие, которое не укладывается в нашу систему привычных понятий.
-
Кажущиеся непреодолимыми внутренние противоречия были обнаружены на пороге 19 - 20 веков не только в световых явлениях, но и в свойствах вещества: масса тел оказалась зависящей от их скорости, потребовался пересмотр понятий пространства и времени.
-
С этой точки зрения вскрытое в итоге развития оптики "непреодолимое" противоречие волновых и корпускулярных свойств света - есть новое выражение диалектики природы, реального единства противоположностей.
-
Упрощенные механистические представления классической физики о непрерывных волнах и частицах, якобы исключающих друг друга, в действительных явлениях природы уживаются одновременно.
-
Это непривычное для нас противоречивое единство свидетельствует только о недостаточности и примитивности нашей механистической картины. Материя действительного мира бесконечно сложнее упрощенных метафизических образов, возникающих у нас в силу привычки и длительного, обыденного опыта.
-
Существующий материальный мир - движущаяся материя - представляется нам в двух основных формах - как вещество и свет (электромагнитное поле). Вещество во всем своем многообразии состоит из электронов, протонов и нейтронов. Вещество казалось более понятным, чем свет, который одновременно обнаруживал свойства волн и частиц. Свет всегда отождествлялся с движением. Однако физика вполне примирялась с "покоящимся" веществом.
-
Однако с точки зрения диалектического мировоззрения такая форма материи, лишенная движения, чистая абстракция. Она действительно оказалась таковой, как это показали совсем неожиданные и удивительные опыты, проведенные в 1927 году. Было обнаружено, что поток электронов, протонов и молекул, встречая малые препятствия и отверстия, дает такие же отчетливые дифракционные явления, как и свет, т.е. обладает теми же основными свойствами волн.
-
Таким образом, с механикой случилось то же самое, что с оптикой - лучевая (геометрическая) оптика волновая оптика (малые размеры); механика Ньютона была "лучевой механикой", но открытия нашего времени (в микромасштабе) показали, что за ней скрывается более общая "волновая механика".
-
Не следует, однако, отождествлять "волны вещества" с волнами света. Природа их различна - свет - это электромагнитные волны. Материя, т.е. вещество и свет, одновременно обладают свойствами волн и частиц, но в целом это не волны и не частицы и не смесь того и другого. Наши механические понятия не в состоянии полностью охватить реальность, для этого не хватает наглядных образов.
-
Формальная математическая теория света, хотя и не вполне совершенная, в настоящее время существует, она создана Дираком и охватывает почти весь круг известных явлений. В частности, на основании этой формальной математической теории света Дираком было предсказано, что в сильном электрическом поле, которое реализуется вблизи атомного ядра, световые кванты с длинами волн не более 0,001 нм могут распадаться на две противоположно заряженные частицы - электрон и позитрон.
-
Т.е. свет превращается в вещество, возможно и обратное превращение. Это предсказание блестяще подтвердил эксперимент при облучении свинца -квантами.
-
История исследования света, его природы и сущности далеко не закончена; несомненно, что впереди науку ждут новые открытия в этой области, что мы ближе подойдем к истине, а техника обогатится новыми средствами. К наиболее революционным достижениям 20-го века в области оптики - это, конечно, создание лазеров и разработка волоконно-оптических технологий.
-
Уравнения Максвелла для изотропного однородного незаряженного диэлектрика
e, m - cкаляры , e=const, m=1,r=0, j=0
-
СИ
-
CGSE (СГСЭ)
Для анизотропного диэлектрика
-
e=const, m=1,r=0, j=0
-
-
Волновое уравнение
-
Или: волновое уравнение
-
Здесь: (СИ)
-
Скалярные волны
Плоские волны Сферические волны Цилиндрические волны
-
Плоские волны.Рассмотрим волновое уравнение:
-
уравнение плоской волны, распространяющейся вдоль единичного вектора n, т.к. в каждый момент времени величина Е постоянна в плоскостях nr=const (уравнение плоскости). Поверхностью одинаковой фазы является плоскость.
-
-
Если вместо трехмерного волнового уравнения взять одномерное:
то ему удовлетворяет плоская волна, распространяющаяся вдоль оси z:
-
Если n направлен вдоль r , то nr= r и решением волнового уравнения является выражение:
представляющее собой уравнение сферической волны, т.к. в каждый момент времени Е постоянна на поверхности сферы r=const.
-
Решение в виде
представляет собой волну, т.е. процесс распространения колебаний.
-
Дляописания сферических волн пользуются сферической системой координат:
-
Тогда волновое уравнение
-
приобретает вид
-
В частном случае, когда Е не зависит от угловых координат, и , волновое уравнение можно записать в виде:
-
или
-
Замена переменных u=rE, дает:
-
После подстановки в
Получаем:
-
Решением этого уравнения
является
-
Тогда, окончательно, выражение для Е примет вид:
-
цилиндрическая система координат:
-
В частном случае, когда Е не зависит от азимутального угла и от координаты z, решением волнового уравнения, имеющего вид:
-
решением волнового уравнения
является:
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.