Презентация на тему "Работа и энергия"

Презентация: Работа и энергия
1 из 11
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
0.0
0 оценок

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Интересует тема "Работа и энергия"? Лучшая powerpoint презентация на эту тему представлена здесь! Данная презентация состоит из 11 слайдов. Также представлены другие презентации по физике. Скачивайте бесплатно.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    11
  • Слова
    физика
  • Конспект
    Отсутствует

Содержание

  • Презентация: Работа и энергия
    Слайд 1

    Работа и энергия

    Работой силы на перемещении называется проекция этой силы на направление перемещения, умноженная на величину перемещения:Рис. 9α, (1.28) где α – угол между векторами силы и перемещения (рис. 9). Величина в (1.28) предполагается бесконечно малой, поэтому называется также элементарной работой.

  • Слайд 2

    При конечном перемещении точки вдоль некоторой кривой Lработа определяется следующим образом. Траектория разбивается на бесконечно малые элементы, на каждом из которых вычисляется элементарная работа по формуле (1.28), а затем все элементарные работы складываются. Эта сумма в пределе, когда длины элементарных перемещений стремятся к нулю, а их число к бесконечности есть по определению работа силы вдоль кривойL. В математике такой предел называется криволинейным интегралом вектора вдоль кривой L. Таким образом: (1.29)

  • Слайд 3

    Единицей работы в СИ является джоуль (Дж) (1 Дж = 1 Н·м). Работа, совершенная за небольшой промежуток времени и отнесенная к этому промежутку называется мощностью: . (1.30) Она измеряется в системе СИ в ваттах (Вт) (1 Вт = 1 Дж/с).

  • Слайд 4

    Используя второй закон Ньютона в виде , равенство и соотношение , которое получается при дифференцировании тождества , получим из (1.29): . (1.31) Величина (1.32) называется кинетической энергией материальной точки. Используя это определение можно записать (1.31) в виде: , (1.33)αz1-z2z2zРис. 10z1 т.е. работа силы при перемещении материальной точки равна приращению кинетической энергии этой точки.

  • Слайд 5

    Этот результат очевидно обобщается на случай произвольной механической системы. Написав соотношения (1.33) для всех точек системы, а затем сложив эти соотношения, получим, что работа всех сил, действующих на механическую систему, равна приращению кинетической энергии системы. Отметим, что в отличие от полного импульса, приращение которого определяется только внешними силами, действующими на систему (1.26), приращение кинетической энергии определяется работой не только внешних, но и внутренних сил.

  • Слайд 6

    Рассмотрим работу постоянной по величине и направлению силы, например, силы тяжести (рис. 10). Элементарная работа на перемещении : , (1.34) где z1 и z2 – высоты (вертикальные координаты) начальной и конечной точек пути

  • Слайд 7

    Разбивая теперь перемещение вдоль произвольной кривой на элементарные участки, применяя к каждому формулу (1.34) и складывая элементарные работы, получим, что работа силы тяжести (как и любой постоянной силы) не зависит от формы пути, а определяется только начальным и конечным положением перемещающейся точки. Можно показать, что аналогичным свойством обладает и любая центральная сила. (Т. е. сила, направленная всюду к одной и той же точке и зависящая только от расстояния от этой точки.)

  • Слайд 8

    Вообще, силы для которых работа не зависит от пути, вдоль которого происходит перемещение точки, а определяется только начальным и конечным ее положениями называются консервативными или потенциальными. Соответственно, силы, для которых работа зависит от пути, называются неконсервативными или диссипативными.

  • Слайд 9

    Работа любой консервативной силы вдоль пути от точки до точки может быть представлена в виде (1.34) где - некоторая функция положения точки. Эта функция называется потенциальной энергией материальной точки. То есть, работа консервативной силы равна убыли потенциальной энергии точки. Объединяя этот результат с (1.33), получим: или . Сумма кинетической и потенциальной энергии называется полной энергией точки: . Таким образом, , или (1.35)

  • Слайд 10

    Закон сохранения (1.35) можно обобщить на случай произвольной механической системы. Если внутренние и внешние силы в системе консервативны, их работа определяется только начальной и конечной конфигурациями механической системы. В этом случае можно ввести (аналогично (1.34)) потенциальную энергию , зависящую только от радиус-векторов точек механической системы и из (1.33) получить закон сохранения энергии в механике: , (1.36) т. е. в системе тел, между которыми действуют только консервативные силы, полная энергия не изменяется со временем.

  • Слайд 11

    Если в системе действуют диссипативные силы, такие как, например, силы трения, ее полная энергия не сохраняется. Однако опыт показывает, что всякий раз, когда изменяется полная энергия, в системе происходят какие-то внутренние изменения. Например, выделяется или поглощается тепло, звуковые или электромагнитные волны. Оказывается, со всеми известными на сегодня процессами можно связать «виды» или «формы» энергии – дополнительные слагаемые в (1.36), с учетом которых это равенство оказывается верным в любой ситуации. В этом заключается универсальный, общефизический закон сохранения энергии – энергия не исчезает и не появляется, она только переходит из одного вида в другой.

Посмотреть все слайды

Сообщить об ошибке