Содержание
-
Основы специальной теории относительности
©В.Е.Фрадкин, 2004 Из коллекции www.eduspb.com 5klass.net
-
Домашнее задание № 1
Г.Н. Степанова. Физика-11, ч.1 стр. 130 – Введение § 28 – знать: В чем проявляется относительность механического движения Принцип относительности Галилея Суть и принцип опыта Майкельсона Постулаты СТО § 29 – знать: Смысл и формулы для кинематических следствий СТО Из коллекции www.eduspb.com
-
Специальная (или частная) теория относительности (СТО)
представляет собой современную физическую теорию пространства и времени. Наряду с квантовой механикой, СТО служит теоретической базой современной физики и техники. СТО часто называют релятивистской теорией, а специфические явления, описываемые этой теорией, – релятивистскими эффектами. Эти эффекты наиболее отчетливо проявляются при скоростях движения тел, близких к скорости света в вакууме c ≈ 3·108 м/с. Из коллекции www.eduspb.com
-
Создатели СТО
Специальная теория относительности была создана А. Эйнштейном (1905 г.). Предшественниками Эйнштейна, очень близко подошедшими к решению проблемы, были нидерландский физик Х. Лоренц и выдающийся французский физик А. Пуанкаре. Значительный вклад внесли Д. Лармор, Д.Фитцджеральд, математик Г. Минковский. Из коллекции www.eduspb.com
-
Альберт Эйнштейн (Einstein) (14.III.1879–18.IV.1955)
Физик-теоретик, один из основателей современной физики. Родился в Германии, с 1893 жил в Швейцарии, в 1933 эмигрировал в США. В 1905 вышла в свет его первая серьезная научная работа, посвященная броуновскому движению: «О движении взвешенных в покоящейся жидкости частиц, вытекающем из молекулярно-кинетической теории». В том же году вышла и другая работа Эйнштейна «Об одной эвристической точке зрения на возникновение и превращение света». Вслед за Максом Планком он выдвинул предположение, что свет испускается и поглощается дискретно, и сумел объяснить фотоэффект. Эта работа была удостоена Нобелевской премии (1921). Наибольшую известность Эйнштейну все же принесла теория относительности, изложенная им впервые в 1905 году, в статье «К электродинамике движущихся тел». Из коллекции www.eduspb.com
-
Хендрик Антон Лоренц (Lorentz) (18.VII.1853–4.II.1898)
Нидерландский физик-теоретик, создатель классической электронной теории. Работы в области электродинамики, термодинамики, оптики, теории излучения, атомной физики. Исходя из электромагнитной теории Максвелла–Герца и вводя в учение об электричестве атомистику, создал (1880–1909) классическую электронную теорию, основанную на анализе движений дискретных электрических зарядов. Вывел формулу, связывающую диэлектрическую проницаемость с плотностью диэлектрика, и зависимость показателя преломления вещества от его плотности (формула Лоренца–Лоренца), дал выражение для силы, действующей на движущийся заряд в магнитном поле (сила Лоренца), объяснил зависимость электропроводности вещества от теплопроводности, развил теорию дисперсии света. Для объяснения опыта Майкельсона–Морли выдвинул (1892) гипотезу о сокращении размеров тел в направлении их движения (сокращение Лоренца). В 1904 вывел формулы, связывающие между собой пространственные координаты и моменты времени одного и того же события в двух различных инерциальных системах отсчета (преобразования Лоренца). Подготовил переход к теории относительности. Из коллекции www.eduspb.com
-
Анри Пуанкаре (Poincare) (29.IV.1854–17.VII.1912)
Французский математик и физик. Основные труды по топологии, теории вероятностей, теории дифференциальных уравнений, теории автоморфных функций, неевклидовой геометрии. Занимался математической физикой, в частности теорией потенциала, теорией теплопроводности, а также решением различных задач по механики и астрономии. В 1905 написал сочинения «О динамике электрона», в которой независимо от А. Эйнштейна развил математические следствия «постулата относительности». Из коллекции www.eduspb.com
-
Принцип относительности и преобразования Галилея.
законы динамики одинаковы во всех инерциальных системах отсчета. Этот принцип означает, что законы динамики инвариантны (т. е. неизменны) относительно преобразований Галилея, которые позволяют вычислить координаты движущегося тела в одной инерциальной системе (K), если заданы координаты этого тела в другой инерциальной системе (K'). В частном случае, когда система K' движется со скоростью υ вдоль положительного направления оси x системы K преобразования Галилея имеют вид: x = x' + υxt, y = y', z = z', t = t'. В начальный момент оси координат обеих систем совпадают. Из коллекции www.eduspb.com
-
Следствие преобразований Галилея - закон преобразования скоростей при переходе от одной системы отсчета к другой: υx = υ'x + υ, υy = υ'y, υz = υ'z. Ускорения тела во всех инерциальных системах оказываются одинаковыми. Следовательно, уравнение движения классической механики не меняет своего вида при переходе от одной инерциальной системы к другой. Из коллекции www.eduspb.com
-
Постулаты СТО
В основе специальной теории относительности лежат два постулата (или принципа), сформулированные Эйнштейном в 1905 г. Эти принципы являются обобщением всей совокупности опытных фактов. Из коллекции www.eduspb.com
-
Принцип относительности Эйнштейна:
все законы природы инвариантны по отношению к переходу от одной инерциальной системы отсчета к другой. Это означает, что во всех инерциальных системах физические законы (не только механические) имеют одинаковую форму. Из коллекции www.eduspb.com
-
Принцип постоянства скорости света:
скорость света в вакууме не зависит от скорости движения источника света или наблюдателя и одинакова во всех инерциальных системах отсчета. Скорость света в СТО занимает особое положение. Это предельная скорость передачи взаимодействий и сигналов из одной точки пространства в другую. Из коллекции www.eduspb.com
-
Принцип соответствия Н.Бора
новая теория (СТО) не отвергла старую классическую механику Ньютона, а только уточнила пределы ее применимости. Такая взаимосвязь между старой и новой, более общей теорией, включающей старую теорию как предельный случай, носит название принципа соответствия. Из коллекции www.eduspb.com
-
Опыты Майкельсона и Морли
Майкельсон (Michelson) Альберт (19.XII.1852–9.V.1931).Американский физик. В 1878–82 и 1924–26 провел измерения скорости света, долгое время остававшиеся непревзойденными по точности. В 1881 экспериментально доказал и совместно с Э. У. Морли (1885–87) подтвердил с большой точностью независимость скорости света от скорости движения Земли. Морли (Morley) Эдвард Уильямс (29.I.1839–1923) Американский физик. Наибольшую известность получили его работы в области интерферометрии, выполненные совместно с Майкельсоном. В химии же высшим достижением Морли было точное сравнение атомных масс элементов с массой атома водорода, за которое ученый был удостоен наград нескольких научных обществ. Из коллекции www.eduspb.com
-
Принцип опыта
Цель опыта – измерить скорость света относительно «эфирного ветра» (параллельно и перпендикулярно движению Земли). Упрощенная схема интерференционного опыта Майкельсона–Морли. (υ – орбитальная скорость Земли). Из коллекции www.eduspb.com
-
Идея опыта
- Наблюдение смещения интерференционных полос. Из коллекции www.eduspb.com
-
Преобразования Лоренца
Кинематические формулы преобразования координат и времени в СТО называются преобразованиями Лоренца. Они были предложены в 1904 году еще до появления СТО как преобразования, относительно которых инвариантны уравнения электродинамики. Для случая, когда система K' движется относительно K со скоростью υ вдоль оси x, преобразования Лоренца имеют вид: Из коллекции www.eduspb.com
-
Относительность одновременности
события, являющиеся одновременными в одной ИСО, неодновременны в другой ИСО, движущейся относительно первой Из коллекции www.eduspb.com
-
Относительность промежутков времени.
Моменты наступлений событий в системе K' фиксируются по одним и тем же часам C, а в системе K – по двум синхронизованным пространственно-разнесенным часам C1 и C2. Система K' движется со скоростью υ в положительном направлении оси x системы K. Из коллекции www.eduspb.com
-
Из коллекции www.eduspb.com
-
Пример
если космонавты отправляются к звездной системе (и обратно), находящейся на расстоянии 500 световых лет от Земли, со скоростью v=0,9999c, то на это потребуется по их часам 14,1 года; в то время как на Земле пройдет 10 веков Из коллекции www.eduspb.com
-
Относительностьрасстояний
Измерение длины движущегося стержня Из коллекции www.eduspb.com
-
Из коллекции www.eduspb.com
-
Домашнее задание № 2
Г.Н. Степанова. Физика-11, ч.1 § 30, 31 – знать: Формулу сложения скоростей и ее смысл. Формулу релятивистского импульса Формулы полной энергии и энергии покоя Связь энергии и импульса Понимать задачи и границы применимости СТО, принцип соответствия В помощь: Таблица «Подведем итоги» на стр. 146. Из коллекции www.eduspb.com
-
Сложение скоростей
Эти соотношения выражают релятивистский закон сложения скоростей для случая, когда частица движется параллельно относительной скорости систем отсчета K и K'. ux = u'x + υ, uy = 0, uz = 0. При υ
-
В любом случае выполняется условие ux ≤ с. Например, пусть u’x = с и υ= c. Тогда: Если в системе K' вдоль оси x' распространяется со скоростью u'x = c световой импульс, то для скорости ux импульса в системе K получим Из коллекции www.eduspb.com
-
Импульс в СТО
Уравнения классической механики Ньютона оказались неинвариантными относительно преобразований Лоренца, и поэтому СТО потребовала пересмотра и уточнения законов механики. В основу такого пересмотра Эйнштейн положил требования выполнимости закона сохранения импульса и закона сохранения энергии в замкнутых системах. Для этого оказалось необходимым изменить определение импульса тела. Релятивистский импульс тела с массой m, движущегося со скоростью записывается в виде Из коллекции www.eduspb.com
-
Масса в СТО
Масса m, входящая в выражение для импульса, есть фундаментальная характеристика частицы, не зависящая от выбора инерциальной системы отсчета, а, следовательно, и от скорости ее движения. (Во многих учебниках прошлых лет ее было принято обозначать буквой m0 и называть массой покоя. Кроме того, вводилась так называемая релятивистская масса, зависящая от скорости движения тела. Современная физика постепенно отказывается от этой терминологии). Из коллекции www.eduspb.com
-
Динамика СТО
Основной закон релятивистской динамики материальной точки записывается так же, как и второй закон Ньютона, нотолько в СТО под понимается релятивистский импульс частицы: Следовательно Из коллекции www.eduspb.com
-
Энергия в СТО
Вычисление кинетической энергии приводит к следующему выражению: Эйнштейн интерпретировал первый член в правой части этого выражения как полную энергию E движущийся частицы, а второй член как энергию покоя. Из коллекции www.eduspb.com
-
Зависимость кинетической энергии от скорости
Зависимость кинетической энергии от скорости для релятивистской (a) и классической (b) частиц. При υ
-
Связь массы и энергии
Утверждение о том, что находящаяся в покое масса m содержит огромный запас энергии получило разнообразные практические применения, включая использование ядерной энергии. Если масса частицы или системы частиц уменьшилась на Δm, то при этом должна выделиться энергия ΔE = Δm·c2. Многочисленные прямые эксперименты дают убедительные доказательства существования энергии покоя. Из коллекции www.eduspb.com
-
Закон пропорциональности массы и энергии является одним из самых важных выводов СТО. Масса и энергия являются характеристиками материальных объектов. Масса тела характеризует его инертность, а также способность тела вступать в гравитационное взаимодействие с другими телами. Важнейшим свойством энергии является ее способность превращаться из одной формы в другую в эквивалентных количествах при различных физических процессах. Формула Эйнштейна выражает фундаментальный закон природы, который принято называть законом взаимосвязи массы и энергии. Из коллекции www.eduspb.com
-
Связь энергии и импульса
Отсюда следует, что для покоящихся частиц (p = 0) E = E0 = mc2. Между полной энергией, энергией покоя и импульсом существует следующая связь: . Из коллекции www.eduspb.com
-
Безмассовые частицы
Т.о. частица может иметь энергию и импульс, но не иметь массы (m = 0). Такие частицы называются безмассовыми. Для безмассовых частиц связь между энергией и импульсом выражается простым соотношением Е = pc. К безмассовым частицам относятся фотоны – кванты электромагнитного излучения и, возможно, нейтрино. Безмассовые частицы не могут существовать в состоянии покоя, во всех инерциальных системах отсчета они движутся с предельной скоростью c. Из коллекции www.eduspb.com
-
Подведем итоги
Из коллекции www.eduspb.com
-
Задание 1
Два автомобиля движутся в противоположных направлениях со скоростями υ1 и υ2 относительно поверхности Земли. Чему равна скорость света от фар первого автомобиля в системе отсчета, связанной с другим автомобилем? c + (υ1 + υ2) c - (υ1 – υ2) c – (υ1 + υ2) c – (υ1 – υ2) c Из коллекции www.eduspb.com
-
Задание 2
Панель дома массой 200 кг поднята на высоту 10 м. Как изменится при этом его масса? Не изменится Увеличится на 0,22∙10–12 кг Уменьшится на 0,22∙10–12 кг Для решения задачи не хватает данных Из коллекции www.eduspb.com
-
Задание 3
Опыты по наблюдению спектра водорода, находящегося в спектральной трубке, выполнялись дважды. Первый раз на Земле, второй раз в космическом корабле, движущемся относительно Земли с постоянной скоростью. Наблюдаемые спектры одинаковы существенно различны сходны, но все спектральные линии сдвинуты друг относительно друга Из коллекции www.eduspb.com
-
Задание 4
Рассчитайте отношение времени τ в системе отсчета, движущейся со скоростью υ = 1,5∙108 м/с относительно лабораторной системы отсчета, к собственному времени τ0. Из коллекции www.eduspb.com
-
Задание 5
Найдите скорость υ частицы, которой потребовалось бы на 2 года больше, чем световому импульсу, чтобы пройти расстояние в 6,0 световых лет до далекой звезды. Скорость частицы выразите в долях скорости света c. Из коллекции www.eduspb.com
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.