Презентация на тему "Светодиоды и полупроводниковые лазеры" 11 класс

Презентация: Светодиоды и полупроводниковые лазеры
Включить эффекты
1 из 32
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
1.0
1 оценка

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Скачать презентацию (0.41 Мб). Тема: "Светодиоды и полупроводниковые лазеры". Предмет: физика. 32 слайда. Для учеников 11 класса. Добавлена в 2016 году. Средняя оценка: 1.0 балла из 5.

Содержание

  • Презентация: Светодиоды и полупроводниковые лазеры
    Слайд 1

    Светодиоды и полупроводниковые лазеры

  • Слайд 2

    Содержание

    Светодиоды П/п лазеры П/п лазеры на фотонных кристаллах

  • Слайд 3

    Светодиоды П/п лазеры П/п лазеры на фотонных кристаллах

  • Слайд 4

        На рис. приведена зависимость запрещенной от волнового вектора для нескольких значений х, из которой следует, что зона проводимости имеет два минимума. Те минимумы, которые расположены в точке Г, являются прямыми, тогда как другие, расположенные на оси х, непрямые.

  • Слайд 5

        На рис. приведена зависимость запрещенной от волнового вектора для нескольких значений х, из которой следует, что зона проводимости имеет два минимума. Те минимумы, которые расположены в точке Г, являются прямыми, тогда как другие, расположенные на оси х, непрямые.

  • Слайд 6

          Принцип действия светодиода основан на излучательной рекомбинации инжектированных носителей в прямосмещенном p-n переходе

  • Слайд 7

    Конструкции светодиодов.

    Среди светодиодных структур основной является структура с плоской геометрией (см. рис.). Обычно прямозонные светодиоды (красное излучение) формируются на подложках GaAs (а), тогда как непрямозонные (оранжевое, жёлтое и зелёное излучения) - на подложках GaP (б).

  • Слайд 8

    При использовании подложки GaAs на неё наращивается переходный слой GaAs(1-x)Px переменного состава с х, изменяющимся в пределах 0-0.4, а затем слой GaAs(1-x)Px с постоянным составом.   Переходная область ограничивает образование безызлучательных центров, обусловленных различием решёток. Фотоны, генерируемые в области перехода, испускаются во всех направлениях, однако наблюдателя достигает лишь та их часть, которая проходит через поверхность. Уменьшение количества излучаемых светодиодом фотонов обусловлено поглощением в материале светодиода, потерями за счёт отражения и потерями за счёт полного внутреннего отражения. Потери, связанные с поглощением, весьма существенны в светодиодах на подложках GaAs (а), т.к. в этом случае подложка поглощает примерно 85% фотонов, излучаемых переходом. В светодиодах на подложках GaP (б) поглощение составляет ~25%, и эффективность излучения может быть существенно увеличена.

  • Слайд 9

      Полная эффективность преобразования электрического сигнала в оптический даётся следующим выражением:

  • Слайд 10

        На рис. показаны поперечные разрезы других светодиодов, которые имеют параболическую, полусферическую и усечённо сферическую геометрию.   Основное отличие этих трёх структур от структуры с плоской геометрией состоит в том, что телесный угол для них равен 1. Таким образом, отношение эффективностей равно   Это означает, что для структур на GaP c n=3.45 при данной геометрии можно ожидать увеличения эффективности на порядок.

  • Слайд 11

        На рис. показаны поперечные разрезы других светодиодов, которые имеют параболическую, полусферическую и усечённо сферическую геометрию.   Основное отличие этих трёх структур от структуры с плоской геометрией состоит в том, что телесный угол для них равен 1. Таким образом, отношение эффективностей равно   Это означает, что для структур на GaP c n=3.45 при данной геометрии можно ожидать увеличения эффективности на порядок.

  • Слайд 12

    Различают два основных типа светодиодов, обеспечивающих ввод излучения в оптические волокна малого диаметра: светодиоды с излучающей поверхностью (рис.4) и с излучающей гранью (рис.).

  • Слайд 13

      Важным параметром, который должен учитываться при конструировании светодиодов для оптических систем связи, является диапазон рабочих частот. При внешнем возбуждении скорость полной излучательной рекомбинации определяется выражением: Rr = Bnp где В-константа излучательной рекомбинации, равная G/n0p0 (G-скорость полной термической генерации).         При достаточно низких уровнях возбуждения, таких, что в материале р-типа р примерно равно р0, время жизни излучательной рекомбинации становится равным: а для материала n-типа, когда n примерно равно n0: Предельная частота светодиода       Экспериментально показано, что предельная частота возрастает с концентрацией р0. Для достижения высоких значений f необходимо уменьшать толщину рекомбинационной области и увеличивать концентрацию носителей

  • Слайд 14

    Полупроводниковые лазеры

    Полупроводниковые лазеры, подобно другим лазерам (таким, как рубиновый лазер или же лазер на смеси He - Ne), испускают излучение, когерентное в пространстве и во времени. Это означает, что излучение лазера высоко монохроматично (имеет узкую полосу спектра) и создает строго направленный луч света. Вместе с тем по ряду важных характеристик полупроводниковые лазеры существенно отличаются от лазеров других типов.

  • Слайд 15

    1. В обычных лазерах квантовые переходы происходят между дискретными энергетическими уровнями, тогда как в полупроводниковых лазерах переходы обусловлены зонной структурой материала. 2. Полупроводниковые лазеры имеют очень малые размеры (~0,1 мм в длину), и так как активная область в них очень узкая (~1 мкм и меньше), расхождение лазерного луча значительно больше, чем у обычного лазера. 3. Пространственные и спектральные характеристики излучения полупроводникового лазера сильно зависит от свойств материала, из которого сделан переход (таких свойств, как структура запрещенной зоны и коэффициент преломления). 4. В лазере с р-n переходом лазерное излучение возникает непосредственно под действием тока, протекающего через прямосмещенный диод. В результате система очень эффективна, поскольку позволяет легко осуществлять модуляцию излучения за счет модуляции тока. Так как полупроводниковые лазеры характеризуются очень малыми временами стимулированного излучения, модуляция может проводиться на высоких частотах.

  • Слайд 16

          Диапазон длин волн лазерного излучения охватывает область спектра от ультрафиолетовой до инфракрасной. В интервале длин волн вблизи 0,9 мкм в качестве источников излучения используется гетеролазеры на основе GaAs-Al(x)Ga(1-x)As. Вблизи длины волны 1,3 мкм в ВОЛС волокно имеет низкие потери (0.6 ДБ/км) и слабую дисперсию, а в окрестности длины волны 1,55 мкм потери достигают минимального значения (0,2 дБ/км), поэтому в качестве источников излучения могут использоваться лазеры на основе Ga(x)In(1-x)As(y)P(1-y)-InP.

  • Слайд 17

          Стимулированное излучение. Работа лазера связана с тремя основными процессами, обусловленными переходом носителей: поглощения, спонтанной эмиссии и стимулированным излучением. Рассмотрим два энергетических уровня E1 и Е2, один из которых Е1 характеризует основное, а другой Е2 - возбужденное состояние       Любой переход между этими состояниями сопровождается испусканием или поглощением фотона с частотой ν12, определяемой из соотношения hν12=E2-E1. При обычных температурах большинство атомов находится в основном состоянии. Эта ситуация нарушается в результате воздействия на систему фотона с энергией, равной hν12. Атом в состоянии E1 поглощает фотон и переходит в возбужденное состояние Е2. Это и составляет процесс поглощения излучения. Возбужденное состояние является нестабильным и через короткий промежуток времени без какого-либо внешнего воздействия атом переходит в основное состояние, испуская фотон с энергией hν12 (спонтанная эмиссия). Время жизни, связанное со спонтанной эмиссией (т.е. среднее время возбужденного состояния), может изменяться в широком диапазоне, обычно в пределах 10-9 - 10-3 с, в зависимости от параметров полупроводника, таких, как структура зон (прямая или не прямая) и плотность рекомбинационных центров. Столкновение фотона, обладающего энергией hν12, с атомом, находящемся в возбужденном состоянии, стимулирует мгновенный переход атома в основное состояние с испусканием фотона с энергией hν12 и фазой, соответствующей фазе падающего излучения (стимулированное излучение).

  • Слайд 18

          На рис. показана базовая структура лазера с p-n переходом. Две боковые грани структуры скалываются или полируются перпендикулярно плоскости перехода. Две другие грани делаются шероховатыми для того, чтобы исключить излучение в направлениях, не совпадающих с главным. Такая структура называется резонатором Фабри-Перо. Смещение лазерного диода в прямом направлении вызывает протекание тока. Вначале, при низких значениях тока, возникает спонтанное излучение, распространяющееся во всех направлениях. При увеличении смещения ток достигает порогового значения, при котором создаются условия для стимулированного излучения, и р-n переход испускает монохроматичный строго направленный луч света.

  • Слайд 19

    Для изготовления лазеров используют полупроводники с прямыми зонами, например GaAs или GaAlAs, в которых возможны переходы электронов без участия фотонов. Создание инверсной заселённости уровней происходит при интенсивной инжекции неосновных носителей, что легче достигается в гетеропереходах (гомопереходы - p - n - переходы, созданные в одном и том же веществе, гетеропереходы получают между p - и n - областями материалов с различной шириной запрещённой зоны, что даёт, например, многоступенчатую форму p - n - перехода), изготовленных на основе материалов с высокой концентрацией примесей. Усиление света происходит только вдоль направлений, перпендикулярных поверхности зеркал, поэтому из области p - n - перехода через полупрозрачную отражающую поверхность выходит узкий луч когерентного излучения.

  • Слайд 20

    На рис. приведена энергетическая зонная диаграмма лазера в присутствии внешнего напряжения U

  • Слайд 21

    Через p - n - переход инжектируются электроны из n - области I в активную область II (толщиной ~ 1мкм), где происходит излучение фотонов с энергией hv=1.4эВ. Переход типа p - p+, т.е. несимметрично легированная область, между p - областью II и областью III создаёт барьер для электронов, попавших в активную II, и способствует накоплению электронов в этой области. Лазерный эффект достигается при определённых пороговых значениях тока через переход (примерно при 300K). Начиная с этих значений тока спектральная полоса излучения значительно сужается. Для уменьшения рабочих токов и ослабления нагрева активный слой часто сокращают до полоски шириной 5 - 20 мкм, идущей от одной отражающей поверхности до другой. Этого достигают применением узкого металлического электрода (верхнего на рис.). У подобных устройств снижается как пороговый ток (примерно до 100 мА при комнатной температуре), так и инерционность вследствие уменьшения ёмкости переходов.

  • Слайд 22

    В качестве материала, инжектирующего электроны (вместо n - GaAs) может быть использован более широкозонный (рис.). В этом случае активный слой GaAs p - типа располагается между двумя широкозонными полупроводниками p - GaAlAs и n - GaAlAs, которые обладают более низким коэффициентом преломления. Это приводит к усилению отражения света от боковых слоёв и, следовательно, к уменьшению потерь света. Мощность излучения лазеров, работающих в непрерывном режиме, составляет около 0.1 Вт. В случае импульсного возбуждения мощность может быть значительно повышена, т.к. нагрев прибора будет ослаблен. КПД инжекционных лазеров достигает 50%, инерционность составляет 1 - 10-9 c, напряжение питания не превышает 3В, а размеры нескольких мм. Модуляция светового тока может осуществляться изменением напряжения.

  • Слайд 23

    Наиболее легко и эффективно инверсия населенности достигается в p-n-переходах за счет инжекции электронов. Известно, что в сильнолегированных (вырожденных) полупроводниках, когда одному и тому же значению энергии соответствуют различные электронные или дырочные состояния, в p- и n-областях уровни Ферми находятся в пределах разрешенных зон и при тепловом равновесии эти уровни для электронов и дырок совпадают (рис.а).

  • Слайд 24

    В области p-n-перехода образуется потенциальный барьер, не позволяющий переходить основным носителям из зоны в зону. Если же к переходу приложить напряжение U в прямом направлении, то потенциальный барьер в области p-n-перехода уменьшается на значение энергии, соответствующей этому напряжению. Как правило, это напряжение оказывается приложенным к переходу, вследствие чего равновесие носителей тока нарушается. Если при тепловом равновесии распределение электронов и дырок можно было описать с помощью квазиуровня Ферми, то при наличии приложенного электрического поля заполнение состояний нужно рассматривать отдельно для зоны проводимости и отдельно для валентной зоны. При включении прямого смещения возникает диффузионный поток электронов через p-n-переход, который стремится поднять квазиуровень Ферми Fn для электронов в p-n-области до его уровня в n-области.

  • Слайд 25

    Инжектированные электроны после диффундирования на небольшое расстояние, определяемое диффузионной длинной, рекомбинируют с дырками; в результате возникает стационарное состояние, при котором скорость рекомбинации электронов в точности сбалансирована скоростью их инжекции. Совершенно аналогичны рассуждения и для дырок в валентной зоне. При наличии стационарного состояния положение квазиуровней Ферми для двух типов носителей в области перехода меняется (рис. б). Основные носители вытягиваются из контакта, чтобы обеспечить условие нейтральности. В настоящее время лазерные диоды в основном изготовляют из GaAs или Ga1-xAlxAs. Структура лазерного диода на p-n-переходе представлена на рис.

  • Слайд 26

    Деградация инжекционных лазеров обусловлена целым рядом механизмов. Выделяют три основных типа деградации: 1) катастрофическое разрушение; 2) образование дефектов темных линий; 3) постепенная деградация. Катастрофическое разрушение происходит под действием больших мощностей излучения, приводящих к непрерывному повреждению зеркал лазера вследствие образования на их поверхности ямок и канавок. Дефекты темных линий представляют собой сетку дислокаций, которые могут формироваться в процессе работы лазера и внедряться внутрь резонатора. Появившись, она может сильно разрастись в течение нескольких часов и вызвать увеличение плотности порогового тока. Деградация лазеров.

  • Слайд 27

    Полупроводниковые лазеры на фотонных кристаллах

  • Слайд 28

    Ученым из компании Bell Labs удалось разработать лазер нового поколения, используя в качестве полупроводника для изготовления многокаскадного полупроводникового лазера фотонные кристаллы. Полученный лазер обладает уникальными свойствами. Например, его излучение может быть направлено в любом, заранее выбранном, направлении, что позволяет встраивать его в обычную полупроводниковую микросхему. Обычный многокаскадный полупроводниковый лазер, представляющий собой набор слоев из тонких полупроводниковых пластин, может излучать свет лишь в стороны, как показано на втором рисунке. Новый лазер на фотоных кристаллах избавлен от этого недостатка и может излучать свет в любом, заранее выбранном направлении.

  • Слайд 29
  • Слайд 30

    Фотонный кристалл, являющийся неотъемлемой частью нового лазера, представляет собой полупрозрачный диэлектрик с определенной периодической структурой и уникальными оптическими свойствами. Уникальность его заключается в том, что фотонный кристалл обеспечивает почти полное управление движением проходящего через него света. Такие возможности достигаются за счет наличия в кристалле диэлектрика равномерно распределенных мельчайших отверстий. Их диаметр подобран таким образом, что они пропускают световые волны лишь определенной длины, а остальные частично отражают или поглощают. При определенном физическом воздействии на кристалл, например, звуковыми волнами, длина световой волны, пропускаемой кристаллом, и направление ее движения могут значительно меняться.

  • Слайд 31

    Многокаскадный полупроводниковый лазер представляет собой этакий "сэндвич", состоящий из нескольких (более двух) тончайших, в несколько нанометров толщиной, чередующихся слоев полупроводника с несколько отличающейся проводимостью. Если приложить к разным концам такого сэндвича электрическое напряжение, то электроны потекут сквозь эти слои весьма специфичным образом: накопив достаточно энергии, они синхронно "перепрыгивают" сквозь слой (выражаясь научно, падают в квантовую яму), излучая затраченную на переход энергию в виде фотонов. Характерной особенностью такого лазера является то, что он излучает непрерывно и равномерно, строго параллельно плоскости, в которой лежат слои полупроводников.

  • Слайд 32

    Полупроводниковые лазеры скоро встанут на вооружениеСША

Посмотреть все слайды

Сообщить об ошибке