Презентация на тему "Транзисторы"

Презентация: Транзисторы
Включить эффекты
1 из 36
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
3.8
15 оценок

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Презентация на тему "Транзисторы" по физике. Состоит из 36 слайдов. Размер файла 1.05 Мб. Каталог презентаций в формате powerpoint. Можно бесплатно скачать материал к себе на компьютер или смотреть его онлайн с анимацией.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    36
  • Слова
    физика
  • Конспект
    Отсутствует

Содержание

  • Презентация: Транзисторы
    Слайд 1

    Транзисторы

  • Слайд 2

    Транзи́стор  —радиоэлектронный компонент из полупроводникового материала, обычно с тремя выводами, позволяющий входным сигналам управлять током в электрической цепи. Управление током в выходной цепи осуществляется за счёт изменения входного напряжения или тока. Небольшое изменение входных величин может приводить к существенно большему изменению выходного напряжения и тока.

  • Слайд 3

    Классификация транзисторов

    По структуре Биполярный транзистор Полевой транзистор По основному полупроводниковому материалу Германиевые Кремниевые Арсенид-галлиевые

  • Слайд 4

    По мощности Маломощные транзисторы до 100мВт Транзисторы средней мощности от 0,1 до 1 Вт Мощные транзисторы (больше 1 Вт)

  • Слайд 5

    Биполярный транзистор

    Биполярный транзистор состоит из трех областей: эмиттера, базы и коллектора, на каждую из которых подается напряжение. В зависимости от типа проводимости этих областей, выделяют n-p-n и p-n-p транзисторы. Обычно область коллектора шире, чем эмиттера. Базу изготавливают из слаболегированного полупроводника (из-за чего она имеет большое сопротивление) и делают очень тонкой. Поскольку площадь контакта эмиттер-база получается значительно меньше площади контакта база-коллектор, то поменять эмиттер и коллектор местами с помощью смены полярности подключения нельзя. Таким образом, транзистор относится к несимметричным устройствам.

  • Слайд 6

    Принцип работы

    В активном режиме работы транзистор включён так, что его эмиттерный переход смещён в прямом направлении (открыт), а коллекторный переход смещён в обратном направлении (закрыт).   Для определённости рассмотрим npn транзистор.

  • Слайд 7

    Поскольку переход ЭБ открыт, то электроны легко «перебегают» в базу. Там они частично рекомбинируют с дырками, но большая их часть из-за малой толщины базы и ее слабой легированности успевает добежать до перехода база-коллектор. Который, как мы помним, включен с обратным смещением. А поскольку в базе электроны — неосновные носители заряда, то электирическое поле перехода помогает им преодолеть его. Таким образом, ток коллетора получается лишь немного меньше тока эмиттера.   Если увеличить ток базы, то переход ЭБ откроется сильнее, и между эмиттером и коллектором сможет проскочить больше электронов. А поскольку ток коллектора изначально больше тока базы, то это изменение будет весьма и весьма заметно. Таким образом, произойдет усиление слабого сигнала, поступившего на базу.

  • Слайд 8

    Основные характеристики

    Коллекторный ток транзистора в нормальном активном режиме работы транзистора больше тока базы в определенное число раз. Это число называется коэффициентом усиления по току и является одним из основных параметров транзистора. Обозначается оно h21. Если транзистор включается без нагрузки на коллектор, то при постоянном напряжении коллектор-эмиттер отношение тока коллектора к току базы даст статический коэффициент усиления по току. Он может равняться десяткам или сотням единиц, но стоит учитывать тот факт, что в реальных схемах этот коэффициент меньше из-за того, что при включении нагрузки ток коллектора закономерно уменьшается. 

  • Слайд 9

    Вторым немаловажным параметром является входное сопротивление транзистора. Согласно закону Ома, оно представляет собой отношение напряжения между базой и эмиттером к управляющему току базы. Чем оно больше, тем меньше ток базы и тем выше коэффициент усиления. Третий параметр биполярного транзистора — коэффициент усиления по напряжению. Он равен отношению амплитудных или действующих значений выходного (эмиттер- коллектор) и входного (база-эмиттер) переменных напряжений. 

  • Слайд 10

    Частотные характеристики

    Входные (а) и выходные (б) статические характеристики биполярного Транзистора, включенного по схеме с общей базой. 0 0,1 0,2 Uэб, В 10 20 30 Iэ, мА Uкб =0 Uкб =-5,0В 0 2 4 Uкб, проб U кб, В I к,мА 30 20 10 Iэ=30мА

  • Слайд 11

    Выходные (а) и входные (б) статические характеристики биполярного транзистора , включенного по схеме с общим эмиттером. 0 0.1 0.2 0.3 Uбэ,В Iб,мА Uкэ=0 Uкэ=-5В 3 1 2 Iк 0 1 2 3 Uкэ,проб Uкэ, В Iб =0 Iб=Iко 0,5 мА 0,5 мА 1,5 мА 20 мА

  • Слайд 12

    Режимы работы биполярного транзистора

    Нормальный активный режим Переход эмиттер-база включен в прямом направлении (открыт), а переход коллектор-база — в обратном (закрыт) UЭБ>0;UКБ

  • Слайд 13

    Схемы включения биполярных транзисторов

    Схема включения с общим эмиттером Эта схема дает наибольшее усиление по напряжению и току (а отсюда и по мощности — до десятков тысяч единиц), в связи с чем является наиболее распространенной.

  • Слайд 14

    Схема включения с общей базой Эта схема не дает значительного усиления сигнала, зато хороша на высоких частотах, поскольку позволяет более полно использовать частотную характеристику транзистора. Если один и тот же транзистор включить сначала по схеме с общим эмиттером, а потом с общей базой, то во втором случае будет наблюдаться значительное увеличение его граничной частоты усиления.

  • Слайд 15

    Схема включения с общим коллектором Особенность этой схемы в том, что входное напряжение полностью передается обратно на вход, т. е. очень сильна отрицательная обратная связь.  Коэффициент усиления по току почти такой же, как и в схеме с общим эмиттером. А вот коэффициент усиления по напряжению маленький (основной недостаток этой схемы). Он приближается к единице, но всегда меньше ее. Таким образом, коэффициент усиления по мощности получается равным всего нескольким десяткам единиц.

  • Слайд 16

    Устройство полевого транзистора

    Полевой транзистор - это полупроводниковый прибор, усилительные свойства которого обусловлены потоком основных носителей, протекающим через проводящий канал и управляемый электрическим полем. В отличие от биполярных работа полевых транзисторов основана на использовании основных носителей заряда в полупроводнике. В связи с этим их называют униполярными. Униполярными называют такие транзисторы, работа которых основана на использовании основных носителей: только дырок или только электронов.

  • Слайд 17

    Схема включения ПТ в цепь

    К истоку подсоединяют плюс, к стоку - минус источника напряжения, к затвору - минус источника. Сопротивление между стоком и истоком очень велико, так как стоковый р-n-переход оказывается под обратным смещением. Подача на затвор отрицательного смещения сначала приводит к образованию под затвором обедненной области, а при некотором напряжении называемом пороговым, - к образованию инверсионной области, соединяющей p-области истока и стока проводящим каналом. При напряжениях на затворе выше канал становится шире, а сопротивление сток-исток - меньше. Рассматриваемая структура является, таким образом, управляемым резистором.

  • Слайд 18

    Конструкция МДП-транзистора

    Две основные структуры МДП транзисторов показаны на рисунке. Первая из них (рис.а) характерна наличием специально осуществленного (собственного или встроенного} канала, проводимость которого модулируется смещением на затворе. В случае канала р-типа положительный потенциал Us отталкивает дырки из канала (режим обеднения), а отрицательный - притягивает их (режим обогащения). Соответственно проводимость канала либо уменьшается, либо увеличивается по сравнению с ее значением при нулевом смещении.

  • Слайд 19

    Вторая структура (рис. б) характерна отсутствием структурно выраженного канала. Поэтому при нулевом смещении на затворе проводимость между истоком и стоком практически отсутствует: исток и сток образуют с подложкой встречновключенные р-п переходы. Тем более не может быть существенной проводимости между истоком и стоком при положительной полярности смещения, когда к поверхности полупроводника притягиваются дополнительные электроны. Однако при достаточно большом отрицательном смещении, когда приповерхностный слой сильно обогащается притянутыми дырками, между истоком и стоком образуется индуцированный (наведенный полем) канал, по которому может протекать ток. Значит, транзисторы с индуцированным каналом работают только в режиме обогащения. В настоящее время этот тип транзисторов имеет наибольшее распространение.

  • Слайд 20

    Принцип действия МДП транзисторов (распределение зарядов при нулевых напряжениях на электродах).

    Принцип работы МОП-транзистора инверсионного типа проиллюстрирован на рисунке. Для простоты полагается, что затвор отделен от полупроводника идеальным изолятором, а влияние поверхностных ловушек не учитывается. Распределение зарядов при нулевых напряжениях на электродах показано на рисунке а. Вблизи "+-областей, созданных диффузией для образования истока и стока, имеются области пространственного заряда, возникшие за счет внутренней разности потенциалов на n-р-переходах. Поскольку в p-области электроны практически отсутствуют, сопротивление исток-сток весьма велико и соответствует сопротивлению двух встречно включенных диодов npи нулевом смещении.

  • Слайд 21

    Если к затвору приложено положительное напряжение (рис 6), вблизи поверхности происходит инверсия типа проводимости, так что в этой области концентрация электронов становится достаточно высокой и сопротивление сток-исток резко уменьшается.

  • Слайд 22

    При подаче положительного напряжения на сток (рис. в) электроны начинают двигаться от истока к стоку по инверсионному слою. За счет падения напряжения вдоль канала нормальная составляющая поля затвора и соответственно концентрация электронов уменьшаются в направлении от истока к стоку. Толщина же обедненной области под инверсионным слоем в этом направлении увеличивается вследствие возрастания разности потенциалов между подложкой и каналом.

  • Слайд 23

    Когда напряжение на стоке превысит определенную величину (рис.г), происходит перекрытие канала вблизи стока, и ток через прибор выходит на насыщение так же, как и в транзисторе с управляющим р-n переходом.

  • Слайд 24

    Условно-графические обозначения

    Со встроенным каналом n-типа Со встроенным каналом n-типа  С изолированным затвором обогащенного типа с p- каналом (индуцированным)   С изолированным затвором обогащенного типа с n- каналом (индуцированным)  С изолированным затвором обедненного типа с p- каналом (встроенным) С изолированным затвором обедненного типа с n-каналом (встроенным)

  • Слайд 25

    Схемы включения полевого транзистора

    Полевой транзистор в качестве элемента схемы представляет собой активный несимметричный четырехполюсник, у которого один из зажимов является общим для цепей входа и выхода. В зависимости от того, какой из электродов полевого транзистора подключен к общему выводу, различают схемы: с общим истокоми входом на затвор; с общим стоком и входом на затвор; с общим затвором и входом на исток. Схемы включения полевого транзистора показаны на рис. 6.     По аналогии с ламповой электроникой, где за типовую принята схема с общим катодом, для полевых транзисторов типовой является схема с общим истоком.

  • Слайд 26

    Вольт - амперные характеристики ПТ со встроенымканалом n- типа: а - стоковые; б - стоко - затворные.

  • Слайд 27

    Усилители постоянного тока

    Усилителями постоянного тока (УПТ) называются устройства, предназначенные для усиления медленно изменяющихся сигналов вплоть до нулевой частоты. УПТ Однотактные прямого усиления Усилители с преобразованием Дифференциальные усилители

  • Слайд 28

    Однотактные усилители прямого усиления

    потенциал эмиттера устанавливается за счет балластного сопротивления Ro применения опорного диода D

  • Слайд 29

    входной каскад УПТ выходной каскад УПТ

  • Слайд 30

    Усилители с преобразованием

    М—модулятор. У—усилитель переменного тока, ДМ—демодулятор. Rн Rн Uн ДМ У М U2 U1 Uвх

  • Слайд 31

    временные диаграммы напряжений в основных точках схемы

  • Слайд 32

    Модуляторы

    компенсированный модулятор простейший транзисторный модулятор

  • Слайд 33

    один из вариантов демодулятора — фазочувствительный выпрямитель

  • Слайд 34

    Дифференциальные усилители

    принципиальная схема простейшего варианта дифференциального усилителя

  • Слайд 35

    Схема включения дифференциального усилителя

    принципиальная схема включения ДУ снесимметричным входом и симметричным выходом

  • Слайд 36

    Разновидности дифференциальных усилителей

    ДУ на составных транзисторах ДУ на МДП-транзисторах ДУ с динамической нагрузкой

Посмотреть все слайды

Сообщить об ошибке