Презентация на тему "Ультразвуковой датчик"

Презентация: Ультразвуковой датчик
Включить эффекты
1 из 20
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
0.0
0 оценок

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Посмотреть презентацию на тему "Ультразвуковой датчик" в режиме онлайн с анимацией. Содержит 20 слайдов. Самый большой каталог качественных презентаций по физике в рунете. Если не понравится материал, просто поставьте плохую оценку.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    20
  • Слова
    физика
  • Конспект
    Отсутствует

Содержание

  • Презентация: Ультразвуковой датчик
    Слайд 1

    Физические основы ультразвука.

    Он-лайн учебник регионарной анестезии. Глава 2. Интерактивный учебный центр “Nerveblocks.ru” pptcloud.ru

  • Слайд 2

    Что есть звук?

    Звук – это механическое колебание среды, то есть последовательность зон сжатия и растяжения. Основная характеристика – частота, измеряется в Герцах (Гц = 1/Сек). Звук в окружающем мире подчиняется волновым законам. Человеческое ухо способно воспринимать звук с частотой от 20 до 20000 Гц.

  • Слайд 3

    Частота, скорость, длина волны.

    Звуковая волна рождается с определенной, постоянной частотой (frequency = f), и распространяется симметрично от источника звука с постоянной для данной среды скоростью (speed = V). Скорость звука в воздухе – 300 м/с, для более плотных сред – скорость распространения звуковой волны больше. Расстояние между двумя ближайшими точками, колеблющимися в одинаковых фазах называется длиной волны (λ).

  • Слайд 4

    Что такое ультразвук?

    Звуковой спектр по частотным характеристикам можно разделить на три сегмента. Соответственно, ультразвук – это звуковая волна с частотой свыше 20000 Гц Диапазон медицинского ультразвука 2,5-15 МГц

  • Слайд 5

    Как рождается ультразвуковая картинка?

  • Слайд 6

    Таким образом, датчик имеет двойную функцию: излучать (1%) и принимать (99%). Сила (амплитуда) каждой отраженной волны соответствует яркости отображенной точки. Положение точки на экране зависит от глубины отражения эхо-сигнала. Множество таких точек формируют целостную картинку.

  • Слайд 7

    Распространение звуковой волны

    Скорость Чем ближе молекулы вещества (выше плотность), тем лучше вещество проводит звук. Скорость распространения ультразвуковой волны необходимо знать для вычисления расстояний между объектами, а также нахождения глубины их залегания. Средняя скорость распространения УЗ в мягких тканях 1540 м/с.

  • Слайд 8

    Отражение

    Фундаментальный принцип ультразвуковой визуализации – это отражение УЗ луча от поверхностей тканей с различной плотностью. Эти отражения воспринимаются датчиком и формируют картинку на дисплее прибора. Процент отраженной УЗ-энергии прямо пропорционален разнице акустических импендансов (Z) на границе тканей. Области вещества со сходными акустическими характеристиками эхо-сигнала не формируют.

  • Слайд 9

    Отражение звука

    Сплошные объекты (диафрагма) - отражение «единым фронтом» - выше процент вернувшейся УЗ-энергии - лучше изображение. - если поверхность перпендикулярна оси УЗ-луча – качество изображения возрастет. Корпускулярные объекты (эритроциты) Сильнее Слабее Сплошное эхо Корпускулярное эхо

  • Слайд 10

    Взаимодействие волн

    Интерференция Зависит от плотности и однородности среды. Сплошное эхо-отражение может быть получено только при условии, что ширина объекта больше, чем четверть длины волны сканирующего луча. Для визуализации мелких объектов – уменьшить длину волны! Уменьшить длину волны удобно, увеличив частоту ультразвукового излучения V=f*λ

  • Слайд 11

    Как появляется картинка на экране?

    Сильное отражение (высокая плотность ткани): гиперэхогенные структуры (белые) – кости, диафрагма, кокременты. Отражение слабее – эхогенные структуры (серые) – большинство плотных органов, мышцы. Слабое отражение – гипоэхогенные структуры (темные) – кровь, жидкость внутри мочевого и желчного пузырей.

  • Слайд 12

    Ультразвуковой луч

    Луч, исходящий из датчика похож на тонкое лезвие - толщина – приблизительно 1 мм. - отображаемая глубина настраивается пользователем Двухмерное изображение: - томографическое сечение - нет информации о толщине объекта Вы контролируете положение луча, соответственно вашим целям.

  • Слайд 13

    Контроль положения датчика

    Продольное положение Поперечное положение Движения: Скольжение Вращение Покачивание Давление

  • Слайд 14

    Частота излучения

    Герц (Гц, Hz) – единица измерения частоты, соответствует одному циклу в секунду. Мегагерц (МГц, MHz) – один миллион колебаний в секунду. Увеличивая частоту УЗ излучения: - Увеличиваем разрешение (осевое и периферическое) - Уменьшаем глубину проникновения Высокочастотные датчики используются для качественной визуализации поверхностных структур, когда глубина проникновения луча – не главное.

  • Слайд 15

    Частота датчика и разрешение

    ↑ частоты = ↑ разрешения 12 МГц – датчик: высокое разрешение, но минимальная глубина. Удобен на шее и в подмышечной области. ↓ частоты= ↑ глубины проникновения. 3МГц-датчик проникнет глубоко в тело, однако разрешение полученной картинки хуже, чем при использовании 12 МГц.

  • Слайд 16

    Низкочастотные датчики (3-5 МГц) – сканировать глубокие органы (печень, желчный пузырь, почки). Высокочастотные датчики (10-15 МГц) – позволяют сканировать поверхностные структуры, например, плечевое сплетение. Но глубина ограничена 3-4 см. Среднечастотные датчики (4-7МГц) – более глубокие структуры, например, плечевое сплетение в подключичной области или седалищный нерв у взрослых.

  • Слайд 17

    Акустический импеданс

    Акустический импеданс (АИ) вещества определяется исходя из плотности этого вещества, а также скорости распространения звука в нем. Чем больше плотность, тем выше АИ. УЗ отражается от границы разделения тканей с различными значениями АИ и чем существенней эти различия, тем больше отражается сигнал. Пары ткань/газ, ткань/кость и кость/газ отражают почти 100% УЗ-энергии на границе разделения.

  • Слайд 18

    Самая большая разница АИ между мягкими тканями и газом. Второе по величине различие – между тканями со средней плотностью и очень плотными тканями (например, кость – мышца). Не следует пытаться сканировать через ребра, грудину или газовый пузырь.

  • Слайд 19

    Контрастность изображения

    Контрастность – это способность аппарата различать различные градации серого, основываясь на силе эхо-сигнала. Для того, чтобы оптимизировать контрастность – надо оптимизировать осевое и периферическое разрешение.

  • Слайд 20

    Разрешение

    Осевое разрешение: способность отображать раздельно два объекта вдоль оси УЗ-луча. Периферическое разрешение: способность отображать раздельно два объекта перпендикулярно оси УЗ-луча

Посмотреть все слайды

Сообщить об ошибке