Содержание
-
Регуляция кровообращения
Механизмы, обеспечивающие регуляцию сердечной деятельности Механизмы регуляции состояния кровеносных сосудов Сопряженная регуляция сердечно-сосудистой системы
-
Задачи систем регуляции
Выполнение всех многообразных функций крови, циркулирующей по сосудистому руслу, возможно лишь при согласовании состава и объема крови с особенностями ее циркуляции в сосудистой системе, которая определяется работой сердца и состоянием сосудистого русла. Поэтому в организме существуют механизмы регуляции, согласующие три основных составляющих циркуляции: а)объем крови, б)работу сердца, в)тонус сосудов.
-
Влиянияна сердце регулирующих механизмов
Хронотропное (частота) Инотропное (сила) Дромотропное (проводимость) Батмотропное (возбудимость) Влияние может быть «+» и «-».
-
Регуляция функции сердца обеспечивается:
Свойствами миокарда Влиянием нервов Влиянием ионов Гормональными влияниями
-
Свойства миокардаМеханизм Франка-Старлинга (Б)
Сила сокращений сердца увеличивается с ростом венозного притока. В желудочках это происходит тогда, когда конечно-диастолический объем крови внихвозрастает в пределах от 130 до 180 мл. (Б)
-
Механизм Ф.-С.
В основе механизма Франка-Старлинга лежит исходное расположение актиновых и миозиновых филаментов в саркомере. Скольжение нитей относительно друг друга происходит при взаимном перекрытии благодаря образующимся поперечным мостикам. Если эти нити несколько растянуть, то количество возможных "шагов" возрастет, поэтому увеличится и сила последующего сокращения (положительный инотропный эффект). Но дальнейшее растяжение может привести к тому, что актиновые и миозиновые нити уже не будут перекрываться и не смогут образовать мостики для сокращения. Поэтому, чрезмерное растяжение мышечных волокон приведет к снижению силы сокращения, к отрицательному инотропному эффекту, что наблюдается при увеличении конечнодиастолического объема выше 180 мл. (при гипертрофии).
-
Эффект Анрепа (В)
При затруднении оттока (>сопротивления) сила сокращения Возрастает (В). В основе этого эффекта лежит тот же механизм Франка-Старлинга: после неполного выброса остается больше крови + новая порция в диастолу.
-
Лестница Боудича:
При повышении ЧСС растет сила сокращения. Обусловлено это тем, что за малую диастолу весь Са++ не успеет откачаться, поэтому его концентрация при следующем ПД возрастает быстрее.
-
Влияние ионов
Большинство регулирующих влияний осуществляется через ИОНЫ. Снижение в крови: Na - снижение ЧСС (Na-Са-сопряж.) К – увеличение ЧСС, Са – снижение ЧСС Увеличение в крови: Na - снижение ЧСС (Na-Са-сопряж.) К – снижение ЧСС и даже остановка сердца, Са – увеличение ЧСС
-
Влияние нервов
Симпатические нервы - подходят ко всем структурам (положительные эффекты) Парасимпатические нервы – главным образом к узлам: - левый vagus – атриовентрикулярный (возбудимость) - правый vagus – синусный (проводимость) [отрицательные эффекты]
-
Механизмы влияний медиаторов
АХ+М-рецепторы – инактив. Са-каналы, АХ+М-рецепторы – актив. К-каналы. НА+-рецепторы – актив. Са-каналы.
-
НА +-рецепторы
Взаимодействие адреналина (и НА) с -рецептора-ми мембраны кардиомиоцитов через посредство внутриклеточного увеличения цАМФ активирует медленные Са2+-каналы. Возрастание входящего кальциевого тока приводит в первую очередь к увеличению продолжительности фазы "плато", а значит к усилению сокращения миокарда. Кроме того, все гормоны, активирующие аденилатциклазу (образование цАМФ), могут воздействовать на миокард и опосредованно - через усиление расщепления гликогена и окисления глюкозы. Такие гормоны как адреналин, глюкагон, инсулин, интенсифицируя образование АТФ, также обеспечивают положительный инотропный эффект.
-
НА и А с α-рецепторами
Взаимодействие норадреналина с этими рецепторами приводит к стимуляции чувствительности миофибрилл к ионам кальция. Отсутствие роста входящего кальциевого и, напротив, рост выходящего калиевого тока приводит к уменьшению продолжительности фазы "плато" и росту ЧСС.
-
АХ+холинорецептор
Стимуляция образования цГМФ в кардиомиоцитах инактивирует медленные кальциевые каналы, что влияет на указанные свойства миокарда «-». Таким путем на кардиомиоциты действует АХ через посредство взаимодействия с М-холинорецепторами. Но АХ, кроме этого, увеличивает проницаемость мембраны для калия (gК+) и тем самым приводит к гиперполяризации. Результатом этих влияний является меньшая скорость деполяризации, укорочение длительности ПД и снижение силы сокращения.
-
(продолжение)
Однако, взаимодействие АХ с рецепторами кардиомиоцитов предсердий (в отличие от желудочков и проводящей системы) приводит еще и к укорочению рефрактерного периода за счет укорочения фазы "плато", что повышает их возбудимость. Это может привести к возникновению предсердных экстрасистол ночью во время сна, когда повышается тонусблуждающего нерва.
-
Рефлекторная регуляция
РЕФЛЕКСЫ НАПРАВЛЕНЫ, ПРЕЖДЕ ВСЕГО, НА УСТРАНЕНИЕ РАЗДРАЖИТЕЛЯ РЕЦЕПТОРОВ. Интракардиальные рефлексы, Экстракардиальные рефлексы.
-
Интракардиальные рефлексы
Через интрамуральные ганглии. В самом сердце есть все структуры рефлекса: рецепторы, афференты, ганглии и эфференты. Примеры интракардиальных рефлексов: А- увеличение притока крови в правое предсердие – усиливается сокращение левого желудочка при малом заполнении его. Б- увеличение притока крови в правое предсердие – снижается сокращение левого желудочка при большом заполнении его.
-
Центры рефлекторной регуляции кровообращения
В продолговатом мозге центры: а) сенсорная, б) прессорная, в) депрессорная. (парасимпатический нерв) Связь со спинным мозгом (симпатические волокна)
-
Взаимосвязь прессорного и депрессорного отелов
Реципрокное взаимодействие: Возбуждение прессорного тормозит депрессорный и наоборот. В результате: депрессорный через вагус ослабляет работу сердца, а через угнетение симпатических центров – сосуды расширяются. Пессорный через симпатические центры стимулирует работу сердца и суживает сосуды.
-
Рецепторы
Барорецепторы Хеморецепторы Давление (соотношение тонуса сосудов и объема крови) рН (трофика тканей)
-
Основные рефлексогенные зоны
Модуляция рецепторов: Рецепторы обладают свойством адаптации, т.е. при длительном раздражении их чувствительность снижается (барорецепторы). Кроме того, они подвержены влиянию гормонов и др. соединений – эффект модуляции.
-
Рефлексы на сердце
Раздражение барорецепторов (АД) через vagus уменьшает ЧСС и УО (АД снижается). Раздражение хеморецепторов (рН крови) через симпатический нерв стимулирует работу сердца – МОК растет, кровоток улучшается.
-
Показатели работы сердца
УО – ударный объем, ДРО – диастолический резервный объем, СРО – систолический резервный объем, ОО – остаточный объем, МОК – минутный объем, ЧСС – «пульс» МОК = УО х ЧСС МОК в покое = 5 л ЧССмакс. = 220 – В (лет) МОКмакс. До 25 л
-
Механизмы регуляции сосудистого кровотока
Объект влияния – ГЛАДКИЕ МЫШЦЫ (фазные и тонические) Механические стимулы Гуморальные стимулы Нейронные влияния
-
Механические стимулы
Влияние внутреннего объема крови на гладкие мышцы стенки сосуда При быстром увеличении объема сокращение При медленном увеличении релаксация
-
Сосудистый тонус
В отличие от "пассивных" коллагеновых волокон гладкомышечные клетки активно влияют на состояние сосуда и кровоток. Гладкие мышцы, сокращаясь и натягивая коллагеновые и эластические волокна, создают активное напряжение в стенке сосуда - сосудистый тонус. Тонус – постоянное напряжение стенки сосуда (F = Pt x r)
-
Тонус поддерживается базальным тонусом+фазными сокращениями гладких мышц. Базальный тонус создается: - реакцией гладкомышечных клеток на давление крови, - наличием в крови вазоактивных соединений, - тоническими импульсами симпатических нервов (1-3 имп./с). Гладкомышечные клетки подразделяются на тонические и фазические. Тонические – обладают пейсмекерными свойствами (самопроизвольная деполяризация), что и поддерживает базальный тонус. Фазические - обеспечивают влияния из вне.
-
Гуморальные стимулы (основные)
А+-,-адренорецепторы: А+-рецепторы–снижение цАМФ и увеличение Са сокращение фазных клеток, А+-рецепторы– увеличение цАМФ и снижение Са расслабление клеток. НА чувствительнее к , А чувствительнее к. Ах+М-рецепторы - увеличивает цГМФ и снижает Са расслабление.
-
Влияние факторов,образующихся местно (модуляторы влияний)
В настоящее время большое внимание уделяется местным регуляторам сосудистого тонуса: факторам, которые образуются в эндотелии сосудов. Они являются как регуляторами, так и посредниками влияния других гуморальных механизмов (медиатором и гормонов). NО (ЭФР) – эндотелиальный фактор расслабления, ЭФС – (эндотелин) – фактор сокращения сосудов, Простагландины - увеличивают проницаемость мембраны для К+, что приводит к расширению сосудов.
-
Рефлекторная регуляция
Нервный центр продолговатого мозга через симпатические нервы регулирует: Влияя на артериолы – уровень АД, Влияя на вены – возврат крови к сердцу. НА взаимодействует с -,-адрено-рецепторами. С - сужение сосуда, С - расширение. В различных сосудах соотношение этих рецепторов разное!
-
Влияние тонуса сосудов на кровоток
1) Выше - на работу сердца: при повышении тонуса сосудов растет сопротивление кровотоку и работе сердца - может развиваться гипертрофия миокарда. 2) Дальше - на обменную функцию микроциркуляторного русла.
-
Схема взаимодействия механизмов регуляции кровообращения
Рис. сопряженная нейрогенная регуляция функции сердца и состояния сосудов
-
Механизмы компенсаторной регуляции кровообращения при перемене положения тела(компенсация эффекта гидростатического давления)
Ортостатический рефлекс – увеличение ЧСС на 6-24/мин Клиностатический рефлекс – уменьшение ЧСС на 4-6/мин
-
Распределение органов в зависимости от особенностей кровоснабжения
А. Кровоток в органе точно соответствует его функциональной активности (ЦНС, сердце) Б. В покое кровоток с избытком, так как он обеспечивает трофику и функцию В. При интенсивной функции орган может работать «в долг» (скелетные мышцы)
-
Перераспределение кровотока при мышечной работе
Увеличение ЧСС и УО – рост МОК Сужение артериальных сосудов в органах (Б) Сужение вен – перераспределение «депо» В скелетных мышцах происходит расширение артерий, артериол и капилляров – резкое увеличение кровотока В сердце увеличение кровотока пропорционально росту МОК, В ЦНС – прежний кровоток
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.