Презентация на тему "β-окисление жирных кислот"

Презентация: β-окисление жирных кислот
Включить эффекты
1 из 16
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
0.0
0 оценок

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Посмотреть и скачать презентацию по теме "β-окисление жирных кислот", включающую в себя 16 слайдов. Скачать файл презентации 0.46 Мб. Большой выбор powerpoint презентаций

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    16
  • Слова
    другое
  • Конспект
    Отсутствует

Содержание

  • Презентация: β-окисление жирных кислот
    Слайд 1

    β-окисление жирных кислот

    Подготовила: Хлистовская Наталия Студентка 2 курса 5 группы Специальности: ППООП

  • Слайд 2

    В 1904 г. Ф. Кнооп (F. Knoop) выдвинул гипотезу β-окисления жирных кислот на основании опытов по скармливанию кроликам различных жирных кислот. Ф. Кнооп высказал предположение, что окисление молекулы жирной кислоты в тканях организма происходит в β-положении. В результате от молекулы жирной кислоты последовательно отщепляются двууглеродные фрагменты со стороны карбоксильной группы. Жирные кислоты, входящие в состав естественных жиров животных и растений, имеют четное число углеродных атомов. Любая такая кислота, от которой отщепляется по паре углеродных атомов, в конце концов проходит через стадию масляной кислоты. После очередного β-окисления масляная кислота становится ацетоуксусной. Последняя затем гидролизуется до двух молекул уксусной кислоты. Теория β-окисления жирных кислот, предложенная Ф. Кноопом, в значительной мере послужила основой современных представлений о механизме окисления жирных кислот.

  • Слайд 3

    Реакции β-окисления происходят в митохондриях большинства клеток организма (кроме нервных клеток). Элементарная схема β-окисления:

  • Слайд 4

    Этапы окисления жирных кислот: Активация жирных кислот. Свободная жирная кислота независимо от длины углеводородной цепи не может подвергаться никаким биохимическим превращениям, в том числе окислению, пока не будет активирована. Активация жирной кислоты протекает на наружной поверхности мембраны митохондрий при участии АТФ, коэнзима A (HS-KoA) и ионов Mg2+ Реакция катализируется ферментом ацил-КоА-синтетазой: В результате реакции образуется ацил-КоА, являющийся активной формой жирной кислоты.

  • Слайд 5

    Транспорт жирных кислот внутрь митохондрий. Ацил-S-КоА не способен проходить через митохондриальную мембрану, поэтому существует способ его переноса в комплексе с витаминоподобным веществом карнитином. На наружной мембране митохондрий имеется фермент карнитин-ацилтрансфераза I. После связывания с карнитином жирная кислота переносится через мембрану транслоказой.На внутренней стороне мембраны фермент карнитин-ацилтрансфераза II вновь образует ацил-S-КоА который вступает на путь β-окисления.

  • Слайд 6

    Интересно знать!!!

    Карнитин синтезируется в печени и почках и затем транспортируется в остальные органы. Во внутриутробном периоде и в первые годы жизни значение карнитина для организма чрезвычайно важно. Энергообеспечение нервной системы детского организма и, в частности, головного мозга осуществляется за счет двух параллельных процессов: карнитин-зависимого окисления жирных кислот и аэробного окисления глюкозы. Карнитин необходим для роста головного и спинного мозга, для взаимодействия всех отделов нервной системы, ответственных за движение и взаимодействие мышц. Существуют исследования, связывающие с недостатком карнитина детский церебральный паралич и феномен "смерти в колыбели".

  • Слайд 7

    Процесс собственно β-окисления состоит из 4-х реакций, повторяющихся циклически. В них последовательно происходит окисление (ацил-SКоА-дегидрогеназа), гидратирование (еноил-SКоА-гидратаза) и вновь окисление 3-го атома углерода (гидроксиацил-SКоА-дегидрогеназа). В последней, трансферазной, реакции от жирной кислоты отщепляется ацетил-SКоА. К оставшейся (укороченной на два углерода) жирной кислоте присоединяется HS-КоА, и она возвращается к первой реакции. Все повторяется до тех пор, пока в последнем цикле не образуются два ацетил-SКоА.

  • Слайд 8

    Последовательность реакций β-окисления жирных кислот

  • Слайд 9

    Следовательно, суммарное уравнение β-окисления активированной кислоты можно записать так: Пальмитоил-КоА + 7ФАД + 7НАД+ + 7Н2O + 7HS-KoA –> –> 8Ацетил-КоА + 7ФАДН2 + 7НАДН + 7Н+.

  • Слайд 10

    Расчет энергетического баланса β-окисления

    При расчете количества АТФ, образуемого при β-окислении жирных кислот необходимо учитывать: За цикл окисления образуется 1 молекула ФАДН2 и 1 молекула НАДН2. В процессе окисления в дыхательной цепи и сопряженного с ними фосфорилирования дают: ФАДН2 (через КоQ)-2 молекулы АТФ и НАДН2-3 молекулы АТФ ЗА ОДИН ЦИКЛ образуется 12 молекул АТФ. Число циклов β-окисления легко определить исходя из представления о жирной кислоте как о цепочке двухуглеродных звеньев. Число разрывов между звеньями соответствует числу циклов β-окисления. Эту же величину можно подсчитать по формуле (n/2 -1), где n – число атомов углерода в кислоте. Количество образуемого ацетил-SКоА – определяется обычным делением числа атомов углерода в жирной кислоте на 2.

  • Слайд 11

    Т.к.,при каждом цикле β-окисления образуются одна молекула ФАДН2 и одна молекула НАДН. Последние в процессе окисления в дыхательной цепи и сопряженного с ним фосфорилирования дают: ФАДН2 – 2 молекулы АТФ и НАДН – 3 молекулы АТФ, т.е. в сумме за один цикл образуется 5 молекул АТФ. При окислении пальмитиновой кислоты образуется 5 х 7 = 35 молекул АТФ. В процессе β-окисления пальмитиновой кислоты образуется 8 молекул ацетил-КоА, каждая из которых, «сгорая» в цикле трикарбоновых кислот, дает 12 молекул АТФ, а 8 молекул ацетил-КоА дадут 12 х 8 = 96 молекул АТФ. Таким образом, всего при полном β-окислении пальмитиновой кислоты образуется 35 + 96 = 131 молекула АТФ. С учетом одной молекулы АТФ, потраченной в самом начале на образование активной формы пальмитиновой кислоты (пальмитоил-КоА), общий энергетический выход при полном окислении одной молекулы пальмитиновой кислоты в условиях животного организма составит 131 – 1 = 130 молекул АТФ

  • Слайд 12

    Окисление жирных кислот с нечетным числом углеродных атомов

    Жирные кислоты с нечетным числом углеродов поступают в организм с растительной пищей и морепродуктами. Их окисление происходит по обычному пути до последней реакции, в которой образуется пропионил-SКоА.

  • Слайд 13

    Окисление ненасыщенных жирных кислот

    Окисление ненасыщенных жирных кислот в принципе происходит так же, как и окисление насыщенных жирных кислот, но с некоторыми особенностями. Двойные связи природных ненасыщенных жирных кислот (олеиновой, линолевой и т.д.) имеют цис-конфигурацию, а в КоА-эфирах ненасыщенных кислот, являющихся промежуточными продуктами при β-окислении насыщенных жирных кислот, двойные связи имеют трансконфигурацию. Кроме того, последовательное удаление двууглеродных фрагментов при окислении ненасыщенных жирных кислот до первой двойной связи дает Δ3,4-ацил-КоА, а не Δ2,3-ацил-КоА, который является промежуточным продуктом при β-окислении ненасыщенных жирных кислот:

  • Слайд 14
  • Слайд 15

    Пример. Окисление линолевой кислоты Так как число атомов углерода равно 18, то количество молекул ацетил-S-КоА равно 9. Значит при его окислении в ЦТК образуется 9×12=108 молекул АТФ.Исходя из формулы (n/2 - 1) число циклов β-окисления равно 8. При расчете получаем 8×5=40 молекул АТФ.В кислоте имеются 2 двойные связи. Следовательно, в двух циклах β-окисления не образуется 2 молекулы ФАДН2, что равноценно потере 4 молекул АТФ. Таким образом, энергетический выход 108 + 40 - 4 =144 молекулы АТФ.

  • Слайд 16

    Окисление жирных кислот у позвоночных обеспечивает по меньшей мере половину энергии, поставляемой окислительными процессами, протекающими в клетках печени, почек, сердечной мышцы и скелетных мышц (в состоянии покоя). У голодающих, пребывающих в спячке животных, а также у перелётных птиц жир по существу единственный источник энергии. В то же время в клетках мозга окисление жирных кислот незначительно или даже вовсе не происходит; единственный источник энергии для них — глюкоза.

Посмотреть все слайды

Сообщить об ошибке