Презентация на тему "Растворы полимеров"

Презентация: Растворы полимеров
Включить эффекты
1 из 25
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
5.0
1 оценка

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Скачать презентацию (0.59 Мб). Тема: "Растворы полимеров". Содержит 25 слайдов. Посмотреть онлайн с анимацией. Загружена пользователем в 2017 году. Средняя оценка: 5.0 балла из 5. Оценить. Быстрый поиск похожих материалов.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    25
  • Слова
    другое
  • Конспект
    Отсутствует

Содержание

  • Презентация: Растворы полимеров
    Слайд 1

    Растворы полимеров

    При взаимодействии полимеров с низкомолекулярными жидкостями (растворителями) возможно образование истинных или коллоидных растворов. Признаки истинных и коллоидных растворов (табл.).

  • Слайд 2

    Взаимодействие полимера с растворителем начинается с набухания. Набухание– это самопроизвольный процесс поглощения низкомолекулярного растворителя полимером, сопровождающийся увеличением его массы и объема. В процессе набухания различают две стадии. Первая - односторонняя диффузия молекул растворителя в объем полимера, физическое взаимодействие с макромолекулами (сольватация функциональных групп макромолекул, рис.), сопровождающееся разрывом слабых межмолекулярных связей; образец полимера значительно увеличивается в объеме. Вторая– медленная диффузия макромолекул в объем растворителя. Рисунок - Первая (а) и вторая (б) стадии процесса набухания: 1 – полярные молекулы растворителя, 2 – полярные молекулы растворителя, сольватирующие функциональные группы полимера, 3 – межмолекулярные связи между макромолекулами

  • Слайд 3

    В соответствии с первой и второй стадиями различают ограниченное и неограниченное набухание. Ограниченное набухание заканчивается первой стадией, самопроизвольного растворения полимера не происходит, так как цепи не могут быть полностью отдалены друг от друга; образуются две сосуществующие фазы: набухший полимер и чистый растворитель. Фазы разделены поверхностью раздела и находятся в равновесии. а – система полимер-растворитель до набухания; б, в – ограниченное набухание полимера в растворителе Неограниченное набухание сопровождается самопроизвольным растворением, т.е. образованием истинного раствора полимера. При медленной диффузии макромолекул в объем растворителя сначала возникает слой более разбавленного раствора, сосуществующий со слоем более концентрированного. Постепенно концентрации слоев выравниваются, образуется истинный раствор.

  • Слайд 4

    Способность полимера к набуханию оценивается степенью набухания  (%), представляет собой отношение массы или объема поглощенной полимером жидкости к единице массы или объема полимера: = (m - m0) / m0 = (V-V0)/V0, где m0, m– навеска исходного и набухшего полимера; V0, V – объем исходного и набухшего полимера. Кинетические кривые набухания  = f(t) Кинетика набуханияполимеров: 1 и 2 - ограниченное набухание при Т1

  • Слайд 5

    Факторы, определяющие набухание и растворение полимеров: 1) природа полимера и растворителя (или его паров); 2) гибкость цепи полимера; 3) молекулярная масса полимера; 4) надмолекулярная структура полимера; 5) наличие поперечных химических связей в полимере; 6) температура системы. Природа полимера и растворителя. Линейные, слаборазветвленные неполярные полимеры (ПИБ, СКИ, СКД) хорошо набухают и растворяются в углеводородах (бензол, толуол, бензин); не растворяются в полярных органических растворителях (кетоны, спирты, вода). Полярные полимеры (ПММА, ПАН, ПВС, ПА) хорошо растворяются в жидкостях близких к ним по полярности (амидные растворители, спирты, кетоны), не растворяются в углеводородах.

  • Слайд 6

    С точки зрения термодинамики способность полимера к самопроизвольному растворению (при постоянных Т и Р) определяется соотношением  ΔG =ΔU –TΔS где ΔG– изменение свободной энергии Гиббса в системе полимер-растворитель, ΔU, ΔS– изменение внутренней энергии, энтропии системы. Самопроизвольное растворение полимера происходит при уменьшении свободной энергии системы, т.е. ΔG

  • Слайд 7

    Гибкость цепи полимера. Полимеры с гибкими цепями легче набухают, т.к. тепловое движение сегментов способствует проникновению молекул растворителя в объем полимера (I стадия), а также легче диффундируют в растворитель, поскольку диффузия осуществляется путем последовательных перемещений сегментов макромолекул(II стадия). Молекулярная масса полимера. Чем выше ММ макромолекул (длиннее цепи), тем больше энергия взаимодействия между ними; тем больше требуется энергии для их разделения. В ряду полимергомологов способность к растворению в одном и том же растворителе снижается. Надмолекулярная структура. Кристаллические полимеры набухают и растворяются гораздо хуже, чем аморфные из-за достаточно сильного межмолекулярного взаимодействия и плотной упаковки макромолекул в кристаллической фазе. Наличие поперечных связей в полимере. Даже небольшое количество поперечных связей препятствует отделению макромолекул друг от друга и их диффузии в растворитель. Редко сшитые полимеры только набухают, а густо сшитые полностью теряют способность набухать. Температура растворения. Для большинства полимеров способность набухать и/или растворяться увеличивается с повышением температуры.

  • Слайд 8

    Количественные характеристики термодинамического сродства полимера и растворителя: 1. Параметр растворимости, δ, (МДж/м3)1/2 2. Свободная энергия смешения, ΔGсм 3. Изменение химического потенциала растворителя, Δμ 4. Величина второго вириального коэффициента, А2, м3*моль/кг2 5. Параметр взаимодействия Флори-Хаггинса, χ Параметр растворимости, δ (МДж/м3)1/2 – характеризует плотность энергии когезии (ПЭК), которая является мерой интенсивности межмолекулярного взаимодействия в веществе. ПЭК, МДж/м3количественно определяется где Еисп– энергия, необходимая для полного испарения вещества; Vмол - молекулярный объем вещества. Параметр растворимости δ (МДж/м3)1/2 δ = ПЭК = Еисп/Vмол

  • Слайд 9

    Параметры растворимости растворителей известны, сведены в справочники. Параметры растворимости полимеров определяются косвенно: δп= δж, где δж– параметр растворимости жидкости в котором степень набухания полимера максимальна. Лучшим растворителем для данного полимера, как правило, является жидкость с близким значением параметра растворимости. δ для ФФС; СКИ – 23,5; 18,8 (МДж/м3)1/2 соответственно. Растворитель ?

  • Слайд 10

    Свободная энергия смешенияΔ Gсм. Самопроизвольное растворение полимера (или взаимное смешение компонентов) при постоянных Т и Р определяется условием: раствор полимера должен обладать меньшей свободной энергией, чем сумма свободных энергий исходных компонентов (полимера и растворителя): Gр-раGi0ni где Gр-ра - свободная энергия раствора полимера; Gi0ni- сумма свободных энергий компонентов, где Gi0 – свободная энергия 1 моль i-го компонента, ni – количество молей. Разность между этими величинами называют свободной энергией смешения: Δ Gсм = Gр-ра - Gi0ni При самопроизвольном растворении свободная энергия смешения является величиной отрицательной Δ Gсм  0. “Хорошие”растворители (высокое термодинамическое сродство) - большие отрицательные значения ΔGсм. “Плохие”растворители – ΔGсм 0 или ΔGсм 0

  • Слайд 11

    Изменение химического потенциала растворителя,Δ О термодинамическом сродстве полимера и растворителя можно также судить по изменению химического потенциала i-го компонента (полимера или растворителя) в процессе растворения. Условие самопроизвольного растворения – существенное уменьшение i, т.е. Δ i= i - i0 Δ i 0 где i0 – химический потенциал i-го компонента до растворения. “Хорошие”растворители - при взаимодействии с полимером достигаются большие отрицательные значения Δ i. “Плохие”растворители – Δi 0 или Δ i 0 На практике экспериментально определяют изменение химического потенциала растворителя Δр: измерением давления пара растворителя над раствором полимера; измерением осмотического давления разбавленных растворов полимера.

  • Слайд 12

    Давление пара над растворами полимеров. Измеряемое над раствором полимера давление пара является давлением пара растворителя, так как полимер не переходит в парообразное состояние. Изменение химического потенциала растворителя для реального раствора описывается уравнением: Δ1= RT lnp1/p10, где p1и p10 – давление пара растворителя над раствором полимера и над чистым растворителем. Если давление пара растворителя над раствором полимера меньше, чем над чистым растворителем p1  p10, то это означает уменьшение числа молекул растворителя в паровой фазе и свидетельствует о хорошем взаимодействии между растворителем и полимером; lnp1/p10 0, Δ 1 0 растворение происходит самопроизвольно. В противном случае p1p10, то это значит, что молекулы растворителя стремятся перейти в парообразное состояние в большем количестве, чем в чистом растворителе и свидетельствует о слабом взаимодействии полимера и растворителя; lnp1/p10 0 и Δ 10 самопроизвольного растворения не происходит.

  • Слайд 13

    Осмотическое давление растворов полимеров. Если разделить раствор полимера в хорошем растворителе (А) и чистый растворитель (Б) полупроницаемой перегородкой, через которую могут диффундировать только молекулы растворителя, то вследствие неравенства химических потенциалов растворителя по обе стороны перегородки его молекулы начнут перемещаться в раствор, оказывая дополнительное гидростатическое давление на стенки ячейки А и перегородку. Это давление, называемое осмотическим . Дополнительное давление компенсируется поднятием жидкости в капилляре. Т.о. стремление молекул растворителя к самопроизвольному проникновению в раствор, вызванное неравенством химических потенциалов 1 10 можно оценить величиной осмотического давления Чем выше осмотическое давление, тем выше термодинамическое сродство между компонентами, тем более хорошим является растворитель для данного полимера.

  • Слайд 14

    В разбавленных растворах НМС осмотическое давление линейно зависит от концентрации растворенного вещества (закон Вант-Гоффа): =сRT, где с – концентрация растворенного вещества. В разбавленных растворах полимеров осмотическое давление возрастает не пропорционально их концентрации, а значительно быстрее. Поэтому используется уравнение Ван-дер-Ваальса в виде вириального разложения концентрации с по степеням:  = RT(А1с + А2с2 + А3с3 + …) или /с = RT(А1 + А2с + А3с2 + …), где с- концентрация полимера в растворе; А1, А2, А3 – первый, второй, третий вириальные коэффициенты, которые зависят от размеров, формы макромолекул. Первый вириальный коэффициент связан с ММ: А1=1/М Второй вириальный коэффициент зависит от термодинамического сродства полимера и растворителя. Третий и последующий члены степенного ряда – мало влияют на. Тогда: /с = RT/М + А2с

  • Слайд 15

    Количественно величина второго вириального коэффициента может быть определена графически при измерении осмотического давления серии разбавленных растворов полимеров и построении зависимости /с=f(с) – прямая линия, наклон которой - второй вириальный коэффициент. Для растворов одного и того же полимера в различных растворителях зависимость /с=f(с) выражается серией прямых,исходящих из одной точки; наклон прямых определяется значением второго вириального коэффициента А2. если А2  0 – растворитель хороший, если А2  0- растворитель плохой, если А2 = 0 идеальный растворитель, т.е. такой растворитель, который не влияет на форму макромолекул.

  • Слайд 16

    Параметр взаимодействия Флори-Хаггинса, χ где А2 – значение второго вириального коэффициента, найденное графически; ρ1,М1 – плотность и молекулярная масса растворителя, ρ2 – плотность полимера Термодинамическое сродство наблюдается при χ

  • Слайд 17
  • Слайд 18

    Конформации макромолекул в растворе зависят от природы растворителя. В термодинамически хорошем растворителе, где А2 > 0, χ ½ - плотной глобулы (в).

  • Слайд 19

    Пластификация полимеров. Пластификация полимеров - введение низкомолекулярных веществ (пластификаторов), облегчающих переработку материала и придающих ему морозостойкость. Введение пластификаторов увеличивает гибкость макромолекул и подвижность надмолекулярных структур. Количественно пластификация оценивается снижением Тс и Тт полимеров, при этом: снижение Тс полимеров означает повышение морозостойкости, т.е. улучшение эксплуатационных свойств; снижение Ттозначает улучшение технологических свойств, повышение безопасности переработки, т.к. у некоторых полимеров Ттблизка к температуре разложения. При введении в полимер пластификатора закономерно понижаются и Тс и Тт. Однако при введении больших количеств пластификатора, более 30 % (объемн.) Тт снижается сильнее, что приводит к сужению интервала Тт – Тс, и, соответственно, к сужению температурного интервала высокоэластичности.

  • Слайд 20

    По агрегатному состоянию пластификаторы: высококипящие, малолетучиежидкости; твердые вещества с невысокой температурой размягчения, которые в процессе переработки находится в размягченном состоянии. При наличии т/д сродства между полимером и пластификатором происходит молекулярное диспергирование, т.е. полимер самопроизвольно набухает в пластификаторе, неограниченно совместим с полимером. Если пластификатор не имеет сродства к полимеру, то самопроизвольно не проникает в полимер, но может быть коллоидно диспергирован с затратой механической энергии. Для оценки термодинамического сродства между полимером и пластификатором следует рассчитать величину Δ 1 (изменения химического потенциала пластификатора). Для этого необходимо измерить давление пара пластификатора над системой полимер-пластификатор. В соответствии с этим пластификаторы делятся на пластификаторы-растворители (в которых данный полимер неограниченно растворяется) и пластификаторы нерастворители (в которых полимер ограниченно набухает).

  • Слайд 21

    Механизм пластификации. Различают: внутрипачечную (внутриструктурную) межпачечную(межструктурную) пластификацию. Внутрипачечнаяпластификация сопровождается молекулярным смешением компонентов, при этом происходит резкое уменьшение вязкости полимера и увеличение гибкости его цепей. Основное условие внутрипачечной пластификации высокая т/д совместимость полимера и пластификатора. Межпачечная пластификация наблюдается при использовании пластификатора, который не совместим или ограниченно совместим с полимером. В случае межпачечной пластификации молекулы пластификатора располагаются на поверхности надмолекулярных структур, создавая поверхностную смазку и увеличивая тем самым подвижность структур. При этом количество вводимого пластификатора составляет доли процента.

  • Слайд 22

    Теории пластификации. Попытки теоретически обосновать механизм внутрипачечной пластификации предпринимались Журковым, Каргиным и Малинским. В случае полярного полимера пластифицирующее действие полярного пластификатора заключается в сольватации полярных групп полимера молекулами пластификатора, при этом снижается межмолекулярное взаимодействие и температура стеклования. Понижение температуры стеклования пропорционально числу молей введенного пластификатора: Δ Тс= К*м, где К – коэффициент пропорциональности, м – число молей пластификатора. Эта зависимость была установлена Журковым, поэтому – правило Журкова или правило мольных долей. Это правило соблюдается только для полярных полимеров.

  • Слайд 23

    В случае неполярных и малополярных полимеров пластификация заключается не в экранировании функциональных групп, а в увеличении свободного объема в полимере, что ведет к увеличению конформационных превращений полимерных цепей и снижению температуры стеклования. Понижение температуры стеклования пропорционально объемной доле пластификатора (правило Каргина-Малинского): Δ Тс= К*, - объемная доля пластификатора. Понижение температуры стеклования в этом случае зависит от размера и формы молекул пластификатора. Правило справедливо только для ряда неполярных или малополярных полимеров.

  • Слайд 24

    Результаты пластификации иллюстрируются с помощью термомеханических кривых Термомеханические кривые для непластифицированного (1) и пластифицированного полимеров (2, 3): а – аморфный полимер; б – кристаллизующийся полимер со степенью кристалличности 1 (2) и 2 (3), при этом 1 > 2.

  • Слайд 25

    Требования к пластификаторам: Должны имеет оптимальные размеры, обеспечивающие с одной стороны, их проникновение между молекулами полимера и максимальное понижение температуры стеклования, и, с другой, - достаточно высокую температуру кипения. Должны иметь удлиненную форму и способностью к конформационным превращениям. Должны совмещаться с полимером, но не обязательно полностью растворяться. Предел совместимости должен быть таким, чтобы сохранялась т/д устойчивость пластифицированной системы в интервале температур, охватывающем температуры переработки, хранения и эксплуатации. Пластификатор должен иметь по возможности небольшую вязкость для облегчения введения в полимер.  

Посмотреть все слайды

Сообщить об ошибке