Содержание
-
ВЫСКАЗЫВАНИЯ Тема 3
-
Тема 2 1. Высказывание и суждение. Структура и виды высказываний 2. Простые атрибутивные высказывания и отношения между ними. Логический квадрат 3. Операции с простыми высказываниями 4. Сложные высказывания. Логические союзы 5. Табличный способ установления истинности сложных высказываний
-
Тема 3 1. Высказывание и суждение. Структура и виды высказываний Высказывание– языковое выражение, которое можно оценить как истинное или ложное. Форма мышления, соответствующая высказыванию – суждение. Суждение – «высказывание, утверждающее или отрицающее, что-нибудь о чем-нибудь» (Аристотель) Суждение – связь двух и более понятий, устанавливающая отношение между предметами и их признаками. Например: «Аристотель – ученик Платона», «Платон мне друг», «Всякая вещь имеет четыре причины», «Холодает», «Иван старше Петра», «Он существует» и т.п. Вопросительные и перформативные предложения (т.е. выражающие обращение, призыв, приказ и т.п.) высказываниями не являются. Например: «Который час?», «Добро пожаловать!», «Посторонним вход воспрещен!» …
-
Структура высказывания Высказывание состоит из субъекта, предиката и логической связки.Субъект и предикат называются терминами высказывания. Субъект (subjectum – «подлежащее») – имя, указывающее на предмет мысли; предмет, о котором нечто утверждается (отрицается). Предикат(praedicatum – «сказанное») – имя, указывающее на свойство предмета мысли; то, что утверждается (отрицается) о предмете мысли (субъекте). Логическая связка (обычно, слово «есть») указывает на отношение между предметом мысли и его свойством (например, на принадлежность свойства или его отсутствие) S естьP СУБЪЕКТ связка ПРЕДИКАТ Например: «Диогенустроил себе жилье в глиняной бочке»
-
Виды высказываний Высказывания ПРОСТЫЕ (p, q, r, s…) СЛОЖНЫЕ состоят из двух и более простых категорические отношений модальные Например:Я чередую умственный и физический трудихорошо себя чувствую pq
-
Категорические высказывания – высказывания, в которых отношение субъекта и предиката не ограничивается какими-либо условиями («Спартанцы мужественны», «Ахейцы ленивы»). Высказывания отношений – такие, в которых выражается отношение между предметом и его свойством (равенства, подобия, родства, последовательности и т.п. Например, «Он дрался, как лев», «За осенью идет зима») Модальные высказывания –указывают на меру отношения или присутствия свойства. Их делят по алетическим модальностям на аподиктические, ассерторические и проблематические. S необходимо есть P S возможно есть P S действительно есть P
-
Простые атрибутивные высказывания– такие, в которых предмету приписывается некоторое свойство («Осенью прохладно», «Всякий моряк ходил за горизонт»…) Они бывают по качеству связки: положительные (S есть P) отрицательные(S не есть P); по количественному параметру субъекта: единичные (Данный S есть P) частные (Некоторые S есть P) общие (Все S есть P).
-
AFFIRMO NEGO A – общеутвердительное Все S есть P I– частноутвердительное Некоторые S есть P E– общеотрицательное Ни один S не есть P O – частноотрицательноеНекоторые S не есть P Михаил Псёлл, XI в.
-
А Е I O противоположность контрарность субконтрарность подпротивность противоречивость контрадикторность подчинение подчинение ЛОГИЧЕСКИЙ КВАДРАТ
-
Ночью все кошки серые Ночью ни одна кошка не серая Ночью некоторые кошки серые Ночью некоторые кошки не серые противоположность контрарность субконтрарность противность противоречивость контрадикторность подчинение подчинение ЛОГИЧЕСКИЙ КВАДРАТ
-
Противоположные (контрарные) высказывания А и Е могут быть одновременно ложными, но не могут быть одновременно истинными Подпротивные (субконтрарные) высказывания I и O могут быть одновременно истинными, но не могут быть одновременно ложными Противоречивые (контрадикторные) высказывания (А и O или Еи I) не могут быть одновременно ни истинными, ни ложными (одно из них всегда истинно, а другое ложно) Если подчиняющее высказывание А или Е истинно, то подчиненное I или O также истинно. Если же подчиненное высказывание I или O ложно, то подчиняющее А или Е также ложно
-
A –Все S есть P I– Некоторые S есть P E– Ни один S не есть P O – Некоторые S не есть P P S+ Р- P- S+ P+ S- P+ S-
-
3. Операции с простыми высказываниями Обращение(конверсия) – это логическая операция, при которой термины высказывания меняются местами (субъект становится предикатом, и наоборот) Все полные люди добродушны Некоторые добряки – полные Превращение (обверсия) – логическая операция, при которой меняется качество высказывания (утвердительное становится отрицательным, и наоборот) Ни один моряк не является рыбаком Все моряки являются нерыбаками Противопоставление (контрапозиция) – операция, при которой производится обращение, а затем превращение, или наоборот (противопоставление субъекту и противопоставление предикату) Все японцы занимаются сумо Некоторые сумоисты – японцы Некоторые сумоисты не являются не японцами P S+ Р- S+ P+ Ни один буддист не является даосом Все буддисты – не даосы Некоторые не даосы – буддисты
-
-
Выявим логическую форму приведенного выражения (формализуем его): Найдем простые высказывания и союзы Простые высказывания обозначим буквами (p, q, r, s), логические союзы – символами. Установим способы связи между простыми высказываниями и их последовательность Запишем выражение в символическом виде pᴧq ᴧ(r→s) 4. Сложные высказывания. Логические союзы Сложное высказывание – выражение, состоящее из простых высказываний (переменных), связанных логическими союзами (функторами) Логический союз – выражение, определяющее характер связи простых высказываний в составе сложного Иван Иванович чрезвычайно тонкий человеки в порядочном разговоре никогда не скажет неприличного словаитотчас обидится, если услышит его. (Н. В. Гоголь)
-
Логические союзы Логический союз определяет вид сложного высказывания: конъюнктивное (соединительное), дизъюнктивное (разъединительное), импликативное (условное), эквивалентное (взаимообусловленное)
-
5. Табличный способ установления истинности сложных высказываний Истинность сложного высказывания зависит от истинности простых, входящих в его состав, а также логических союзов Условия истинности сложных высказываний задаются логической двузначностью и таблицами истинности для логических союзов Таблица истинности позволяет установить условия истинности сложных высказываний различного вида при различных логических значениях переменных Количество строк в таблице определяется количеством переменных, каждая из которых может принимать два значения (“истина” и “ложь”), т.е. равно количеству переменных возведенному во вторую степень. Отрицание истинно, когда исходное высказывание ложно и наоборот
-
Конъюнкция Дизъюнкция Сильная дизъюнкция
-
Импликация Эквиваленция
-
Установим значения переменных, при которых истинно следующее высказывание: ((p →q) p) → q Высказывание истинно при любых значениях переменных. Подобные выражения являются логическими законами.
-
Логические законы – правильные схемы рассуждений – логические схемы, которые при любых подстановках преобразуются только в истинные выражения. Если цветы не поливать, они завянут Цветы не поливали Они завяли Выполнимые схемы рассуждений – логические схемы, которые при одних подстановках преобразуются в истинные, а при других в ложные выражения. Если цветы не поливать, они завянут Цветы поливали Они не завяли Противоречивые (невыполнимые) схемы рассуждения – логические схемы, которые при любых подстановках преобразуются исключительно в ложные выражения. Неправда, что цветы всегда либо вянут, либо не вянут
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.