Содержание
-
Геометрические построения, необходимые при выполнении чертежей
-
Цель
Сформировать у студентов навыки выполнения чертежей предметов с использованием геометрических построений.
-
-
Деление окружности на 4 равные части
Чтобы разделить окружность на четыре равные части, нужно провести два взаимно перпендикулярных диаметра.
-
Деление окружности на 8 равных частей
Для того, чтобы разделить окружность на восемь равных частей, следует разделить пополам углы между взаимно перпендикулярными диаметрами и провести еще пару взаимно перпендикулярных диаметров, то их концы разделят окружность на 8 равных частей. Соединив концы этих диаметров, получим правильный восьмиугольник.
-
Деление окружности на 3 и 6 частей
Чтобы разделить окружность на 3 равные части, необходимо провести дугу радиусом R этой окружности лишь из одного конца диаметра, получим первое и второе деление. Третье деление находится на противоположном конце диаметра. Соединив эти точки, получим равносторонний треугольник.
-
Деление окружности на 6 частей
Для деления окружности на 6 частей используют равенство сторон правильного шестиугольника радиусу описанной окружности. Из противоположных концов одного из диаметров окружности описываем дуги радиусом R. Точки пересечения этих дуг с заданной окружностью разделят её на 6 равных частей. Последовательно соединив найденные точки, получают правильный шестиугольник.
-
Деление окружности на 12 частей
Чтобы разделить окружность на 12 частей, деление окружности на 6 частей повторяют дважды, используя в качестве центров концы взаимно перпендикулярных диаметров. Точки пересечения проведенных дуг с заданной окружностью разделят её на 12 частей. Соединив построенные точки, получим правильный 12-угольник.
-
Деление окружности на 5 частей
Пятой части окружности соответствует центральный угол в 72° (360° : 5 =72°). Этот угол можно построить при помощи транспортира. Соединив точки 1 и 3, 1 и 4, 2 и 4, 3 и 5, 5 и 2, получим звезду, а соединив полученные точки по порядку 1, 2, 3, 4, 5, 1, -правильный пятиугольник.
-
Чтобы разделить окружность с центром в точке О на 5 частей, поступают следующим образом. Один из радиусов окружности, например ОМ, делят пополам. Из середины отрезка ОМ точки N радиусом R1, равным отрезку АN, проводят дугу окружности и отмечают точку Р пересечения этой дуги с диаметром, которому принадлежит радиус ОМ. Отрезок АР равен стороне вписанного в окружность правильного пятиугольника. Поэтому из конца А диаметра, перпендикулярного к ОМ, радиусом R2, равным отрезку АР проводят дугу окружности. Точки В и Е пересечения этой дуги с заданной окружностью позволяют отметить две вершины пятиугольника. Еще две вершины (С и В) являются точками пересечения дуг окружностей радиусом R2 с центрами в точках В и Е с заданной окружностью с центром в точке О. Вершины правильного пятиугольника АВСВЕ делят заданную окружность на 5 равных частей.
-
Из истории геометрических построений
-
Закрепление
Скажите, на сколько частей нужно разделить окружность, чтобы выполнить чертеж торгового знака?
-
Практическая работа
Вычертить контур детали, применяя правила деления окружности на равные части.
-
Итоги урока
- Что нового вы узнали на уроке?
- Для чего нужно знать правила деления окружности на равные части?
-
Домашнее задание
Завершить практическую работу.
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.