Содержание
-
Трендовая модель
-
Трендовые модели прогнозирования
Статистические наблюдения в социально-экономических исследованиях обычно проводятся регулярно через равные отрезки времени и представляются в виде временных рядов xt, где t = 1, 2, ..., п. В качестве инструмента статистического прогнозирования временных рядов служат трендовые регрессионные модели, параметры которых оцениваются по имеющейся статистической базе, а затем основные тенденции (тренды) экстраполируются на заданный интервал времени. Методология статистического прогнозирования предполагает построение и испытание многих моделей для каждого временного ряда, их сравнение на основе статистических критериев и отбор наилучших из них для прогнозирования. При моделировании сезонных явлений в статистических исследованиях различают два типа колебаний: мультипликативные и аддитивные. В мультипликативном случае размах сезонных колебаний изменяется во времени пропорционально уровню тренда и отражается в статистической модели множителем. При аддитивной сезонности предполагается, что амплитуда сезонных отклонений постоянна и не зависит от уровня тренда, а сами колебания представлены в модели слагаемым.
-
Основой большинства методов прогнозирования является экстраполяция, связанная с распространением закономерностей, связей и соотношений, действующих в изучаемом периоде, за его пределы, или — в более широком смысле слова — это получение представлений о будущем на основе информации, относящейся к прошлому и настоящему. Наиболее известны и широко применяются трендовые и адаптивные методы прогнозирования. Среди последних можно выделить такие, как методы авторегрессии, скользящего среднего (Бокса — Дженкинса и адаптивной фильтрации), методы экспоненциального сглаживания (Хольта, Брауна и экспоненциальной средней) и др. Для оценки качества исследуемой модели прогноза используют несколько статистических критериев. Наиболее распространенными критериями являются следующие.
-
Относительная ошибка аппроксимации: где et = хt - — ошибка прогноза; хt — фактическое значение показателя; — прогнозируемое значение.
-
Данный показатель используется в случае сравнения точности прогнозов по нескольким моделям. При этом считают, что точность модели является высокой, когда
-
Средняя квадратическая ошибка: где k — число оцениваемых коэффициентов уравнения. Наряду с точечным в практике прогнозирования широко используют интервальный прогноз. При этом доверительный интервал чаще всего задается неравенствами
-
где tα — табличное значение, определяемое по t-распределению Стьюдента при уровне значимости α и числе степеней свободы п - k. В литературе представлено большое число математико-статистических моделей для адекватного описания разнообразных тенденций временных рядов. Наиболее распространенными видами трендовых моделей, характеризующих монотонное возрастание или убывание исследуемого явления, являются:
-
Правильно выбранная модель должна соответствовать характеру изменений тенденции исследуемого явления; При этом величина еt должна носить случайный характер с нулевой средней. Кроме того, ошибки аппроксимации et должны быть независимыми между собой и подчиняться нормальному закону распределения et Î N (0, σ). Независимость ошибок et, т.е. отсутствие автокорреляции остатков, обычно проверяется по критерию Дарбина—Уотсона, основанного на статистике:
-
где et = xt - . Если отклонения не коррелированы, то величина DW приблизительно равна двум. При наличии положительной автокорреляции 0 ≤ DW ≤ 2, а отрицательной — 2 ≤ D W ≤ 4.
-
О коррелированности остатков можно также судить по коррелограмме для отклонений от тренда, которая представляет собой график функции относительно τ коэффициента автокорреляции, который вычисляется по формуле где τ = 0, 1, 2 ... . После выбора наиболее подходящей аналитической функции для тренда его используют для прогнозирования на основе экстраполяции на заданное число временных интервалов.
-
Так как сезонные колебания представляют собой циклический, повторяющийся во времени процесс, то в качестве сглаживающих функций используется гармонический ряд (ряд Фурье) следующего вида:
-
Оценки параметров αi и βi модели определяют из выражений где k = п / 2 — максимально допустимое число гармоник; ωi = 2πi / п — угловая частота i-й Гармоники (i = 1, 2, ..., т).
-
Пусть т — число гармоник, используемых для сглаживания сезонных колебаний (т
-
а расчетные значения временного ряда исходного показателя определяются по формуле
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.