Презентация на тему "Эволюция звезд"

Включить эффекты
1 из 13
Смотреть похожие
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
4.0
6 оценок

Рецензии

Добавить свою рецензию

Аннотация к презентации

Презентация для школьников на тему "Эволюция звезд" по астрономии. pptCloud.ru — удобный каталог с возможностью скачать powerpoint презентацию бесплатно.

Содержание

  • Эволюция звезд
    Слайд 1

    Эволюция звезд

  • Слайд 2

    Звёздная эволюция — последовательность изменений, которым звезда подвергается в течение её жизни, то есть на протяжении сотен тысяч, миллионов или миллиардов лет, пока она излучает свет и тепло. В течение таких колоссальных промежутков времени изменения оказываются весьма значительными.

  • Слайд 3

    Эволюция звезды начинается в гигантскоммоле-кулярномоблаке, также называемомзвёздной колыбелью.Большая часть «пустого» пространства в галактике в действительности содержит от 0,1 до 1 молекулы на см³. Молекулярное облако же имеет плотность около миллиона молекул на см³. Масса такого облака превышает массу Солнца в 100 000—10 000 000 раз благодаря своему размеру: от 50 до 300 световых лет в поперечнике. Пока облако свободно обращается вокруг центра родной галактики, ничего не происходит. Однако из-за неоднородности гравитационного поля в нём могут возникнуть возмущения, приводящие к локальным концентрациям массы. Такие возмущения вызы-ваютгравитационный коллапс облака.

  • Слайд 4

    При коллапсе молекулярное облако разделяется на части, образуя всё более и более мелкие сгустки. Фрагменты с массой меньше ~100 солнечных масс способны сформировать звезду. В таких формирова-нияхгаз нагревается по мере сжатия, вызванного высвобождением гравитационной потенциальной энергии, и облако становится протозвездой, транс-формируясь во вращающийся сферический объект. Звёзды на начальной стадии своего существования, как правило, скрыты от взгляда внутри плотного облака пыли и газа. Часто силуэты таких звёздо-образующих коконов можно наблюдать на фоне яркого излучения окружающего газа. Такие образо-ванияполучили название глобул Бока.

  • Слайд 5

    Молодые звёзды малой массы (до трёх масс Солнца), находящиеся на подходе к главной последовательности, полностью конвективны; процесс конвекции охваты-ваетвсе области светила. Это ещё по сути протозвёзды, в центре которых только-только начинаются ядерные реак-ции, и всё излучение происходит, в основном, из-за гравитационного сжатия. Пока гидростатическое равновесие ещё не установлено, светимость звезды убывает при неизменной эффективной температуре.

  • Слайд 6

    Очень малая доля протозвёзд не достигает достаточной для реакций термоядерного синтеза температуры. Такие звёзды полу-чили название «коричневые карлики», их масса не превышает одной десятой сол-нечной. Такие звёзды быстро умирают, постепенно остывая за несколько сотен миллионов лет. В некоторых наиболее массивных протозвёздах температура из-за сильного сжатия может достигнуть 10 миллионов К, делая возможным синтез гелия из водорода. Такая звезда начинает светить-ся.

  • Слайд 7

    Реакции сжигания гелия очень чувствитель-нык температуре. Иногда это приводит к большой нестабильности. Возникают силь-нейшиепульсации, которые в конечном итоге сообщают внешним слоям достаточ-ноеускорение, чтобы быть сброшенными и превратиться в планетарную туманность. В центре туманности остаётся оголенное ядро звезды, в котором прекращаются термо-ядерные реакции, и оно, остывая, превращается в гелиевый белый карлик, как правило, имеющий массу до 0,5-0,6 солнечных и диаметр порядка диаметра Земли.

  • Слайд 8

    При достижении звездой средней величины (от 0,4 до 3,4 солнечных масс) фазы крас-ного гиганта в её ядре заканчивается водо-род и начинаются реакции синтеза углерода из гелия. Этот процесс идет при более высоких температурах и поэтому поток энергии от ядра увеличивается, что приво-дитк тому, что внешние слои звезды начи-наютрасширяться. Начавшийся синтез углерода знаменует новый этап в жизни звезды и продолжается некоторое время. Для звезды по размеру схожей с Солнцем этот процесс может занять около миллиарда лет.

  • Слайд 9

    Молодые звёзды с массой больше 8 солнечных масс уже обладают характеристиками нормаль-ныхзвезд, поскольку прошли все промежуточ-ныестадии и смогли достичь такой скорости ядерных реакций, чтобы они компенсировали потери энергии на излучение, пока накаплива-ласьмасса гидростатического ядра. У этих звёзд истечение массы и светимость настолько велики, что не просто останавливают коллапсирование ещё не ставших частью звезды внешних областей молекулярного облака, но, наоборот, отталкивает их прочь. Таким образом, масса образовавшейся звезды заметно меньше массы протозвёздного облака. Скорее всего, этим и объясняется отсутствие в нашей галактике звёзд больше чем около 300 масс Солнца.

  • Слайд 10

    После того, как звезда с массой большей, чем пять солнечных, входит в стадию красного сверхгиганта, её ядро под действием сил гравитации начинает сжиматься. По мере сжатия увеличиваются температура и плотность, и начинается новая последовательность термоядерных реакций. В таких реакциях синтезируются все более тяжёлые элементы: гелий, углерод, кислород, кремний и железо, что временно сдерживает коллапс ядра. В конечном итоге, по мере образования всё более тяжёлых элементов периодической системы, из кремния синтезируется железо-56. На этом этапе дальнейший термоядерный синтез становится невозможен поскольку ядро железа-56 обладает максимальным дефектом массы и образование более тяжёлых ядер с выделением энергии невозможно. Поэтому когда железное ядро звезды достигает определённого размера, то давление в нём уже не в состоянии противостоять тяжести наружных слоёв звезды, и происходит незамедлительный коллапс ядра с нейтрониза-циейего вещества.

  • Слайд 11

    Сопутствующий этому всплеск нейтрино прово-цирует ударную волну. Сильные струи нейтрино и вращающееся магнитное поле выталкивают большую часть накопленного звездой материала — так называемые рассадочные элементы, включая железо и более лёгкие элементы. Разлетающаяся материя бомбардируется выры-ваемымииз ядра нейтронами, захватывая их и тем самым создавая набор элементов тяжелее железа, включая радиоактивные, вплоть до урана (а возможно, даже до калифорния). Таким образом, взрывы сверхновых объясняют нали-чиев межзвёздном веществе элементов тяжелее железа, что, однако, не является единственно возможным способом их образования, к примеру это демонстрируют технециевые звёзды.

  • Слайд 12

    Взрывная волна и струи нейтрино уносят вещество прочь от умирающей звезды в межзвёздное пространство. В последующем, остывая и перемещаясь по космосу, этот материал сверхновой может столкнуться с другим космическим «мусором», и возможно, участвовать в образовании новых звёзд, планет или спутников. Процессы, протекающие при образовании сверхновой, до сих пор изучаются, и пока в этом вопросе нет ясности. Также под вопросом остаётся момент, что же на самом деле остаётся от изначальной звезды. Тем не менее, рассматриваются два варианта: нейтронные звезды и чёрные дыры.

  • Слайд 13

    Крабовидная туманность — газообразная туман-ностьв созвездии Тельца, являющаяся остатком сверхновой и плерионом. Она стала первым астрономическим объектом отождествлённым с историческим взрывом сверхновой, записанным китайскими и арабскими астрономами в 1054 году. Расположенная на расстоянии около 6500 световых лет (2 кпк) от Земли, туманность имеет диаметр в 11 световых лет (3,4 пк) и расширяется со скоростью около 1500 километров в секунду. В центре туманности находится (нейтронная звезда), 28—30 км в диаметре, который испускает импульсы излучения от гамма-лучей до радиоволн. При рентгеновском- и гамма-излучении выше 30 кэВ, этот пульсар является сильнейшим постоянным источником подобного излучения в нашей галактике.

Посмотреть все слайды

Предложить улучшение Сообщить об ошибке