Презентация на тему "Движение под углом к горизонту"

Презентация: Движение под углом к горизонту
1 из 17
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
0.0
0 оценок

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Скачать презентацию (0.19 Мб). Тема: "Движение под углом к горизонту". Предмет: физика. 17 слайдов. Добавлена в 2016 году.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    17
  • Слова
    физика
  • Конспект
    Отсутствует

Содержание

  • Презентация: Движение под углом к горизонту
    Слайд 1

    Решение задач на тему «Движение под углом к горизонту»

    Авторы работы: Ершова А. Талдыкина А.

  • Слайд 2

    Условия задачи

    Тело брошено со скоростью V под углом @ к горизонту. Определить: Траекторию движения тела Время полёта Дальность полёта Максимальную высоту подъёма H Скорость тела на высоте h

  • Слайд 3

    Дано:

    V, @ Решение: Найти: 1)Уравнения движения 2) t 3)l 4)H max 5) V 6) a , a t 7)R

  • Слайд 4

    y x g voy vox @ l S vo vx2 vh2 vy2 B1 B2 Движение данного тела в системе координат. График А . 0 h h Vh1 Vy1 Vx1

  • Слайд 5

    Решение

    Движение тела вдоль оси x равномерное(ax=0);V0x = Vocos@, причем Vx=V0x=const. Уравнение движения вдоль оси x имеет вид: x = x0xt = v0xtcos@ Движение по оси y равнопеременное с ускорением ау= -g = const и начальной скоростью Voy = V0sin@; Vy = Voy – gt. Уравнение движения вдоль оси уимеет вид: y = Voyt – gt^2/2 = V0tsin@ - gt^2/2

  • Слайд 6

    Найти траекторию движения – это значит найти аналитическое уравнение кривой, по которой движется тело в пространстве. Т. к. t = x/V0cos@, то y = xtg@ - gx^2/2V0^2cos^2@ . 2. Найдём t ,приравняв y = V0tsin@ - gt^2/2 к 0: t(V0sin@ - gt/2) = 0 t1=0 t2 = (2V0/g)sin@ Действительно, тело на земле оказывается дважды - в начале и в конце полёта.

  • Слайд 7

    3) Т. к. вдоль оси x движение равномерное и известно время движения, то xmax = l = V0xt = (V0cos@2V0sin@)/g = =V0^2sin2@/g 4)Hmax можно найти через время подъёма tпод.Т. к. в точке Нmax Vy=0, то 0 = V0y – gtпод tпод = (V0/g)sin@ Таким образом, Ymax = Hmax = V0ytпод – V0yt под ^2/2 = V0y^2/2g Hmax = (V0^2sin^2@)/2g.

  • Слайд 8

    5) Для определения скорости на высоте h необходимо знать время, когда тело находиться на этой высоте, th Vx = V0x, Vy = V0y – gth y = h = V0yth – gth^2/2 (th)1,2 = V0y+/- V0y^2 – 2gh g Скорость в первой точке при th1 Vx1 = V0cos@ Vy1 = (V0^2sin^2@ - 2gh)

  • Слайд 9

    Модуль скорости равен Vh 1 = V0^2-2gh, тангенс угла наклона скорости к оси х: tgB1=Vy1/Vx1 = V0^2sin^2@ – 2gh V0cos@ Скорость во второй точке при th2 Vx2 = V0cos@ Vy2 = - V0^2sin^2@ - 2gh Модуль скорости равен Vh 2 = V0^2-2gh, тангенс угла наклона скорости к оси х: tgB1=Vy1/Vx1 = - V0^2sin^2@ – 2gh V0cos@

  • Слайд 10

    6)В точке О a0 = -gcos@ а0t = -gsin@ В точке А аА = -g atA = 0 7)Нормальное ускорение определяется по формуле а = V^2/RR = V^2/a, где R – радиус кривизны в данной точке, т. е. радиус окружности, часть дуги которой совпадает с траекторией в данной точке. В точке О V = V0, a = gcos@ R0 = V0^2/gcos@ B точке А Vy = 0, a = g, VA = V0x = V0cos@ RA = (V0^2cos@)/g

  • Слайд 11

    Приложение

    Ознакомившись с основными действиями пи решении задач по теме «Движение под углом к горизонту», Вы можете проверить приобретенные знания. С этой целью Вам предлагается следующая задача:

  • Слайд 12

    Условия задачи

    Тело брошено горизонтально со скоростью 20м/с.Определить смещение тела от точки бросания,S, при котором скорость будет направлена под углом 45’ к горизонту.

  • Слайд 13

    Если у Вас возникли трудности при решении задачи, Вы можете воспользоваться следующими подсказками: 1)Кратко изложенные этапы решения; 2)Необходимые формулы; 3)Ответ.

  • Слайд 14

    Этапы решения

    1.Выбрать оси координат. 2.Записать уравнения движения тела. 3.Определить момент времени t, когда скорость будет направлена под углом 45’ к горизонту. 4.Подставить t в уравнение движения и найти координаты тела. 5.Найти искомое перемещение.

  • Слайд 15

    Формулы

    1.x = V0t 2.y = gt^2/2 3.Vy/Vx = tg@ 4.gt = V0 5.S = x^2 + y^2

  • Слайд 16

    Ответ

    S = 45 м.

  • Слайд 17

    Спасибо за внимание!!! 2007

Посмотреть все слайды

Сообщить об ошибке