Презентация на тему "Влияние звука на струю жидкости" 10 класс

Презентация: Влияние звука на струю жидкости
1 из 24
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
4.2
2 оценки

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Презентация для 10 класса на тему "Влияние звука на струю жидкости" по физике. Состоит из 24 слайдов. Размер файла 2.33 Мб. Каталог презентаций в формате powerpoint. Можно бесплатно скачать материал к себе на компьютер или смотреть его онлайн.

Содержание

  • Презентация: Влияние звука на струю жидкости
    Слайд 1

    Влияние звука на струю жидкости

    Работа выполнена учеником 10 информационно-технологического класса Кравцовым Даниилом

  • Слайд 2

    В ходе изучения темы были рассмотрены следующие вопросы:

    Струя жидкости с физической точки зрения. Капиллярные волны Различные явления, возникающие при воздействии звука на струю жидкости Исследование частоты слипания струи жидкости от физических и химических свойств жидкости

  • Слайд 3

    На струе жидкости, подающей вниз можно выделить две области: ближайшая к отверстию сопла часть струи совершенно прозрачна и выглядит неподвижным цилиндром; ниже струя внезапно становится мутной, т.к. начинается разбиение этого сплошного потока на отдельные капли, которые хорошо видны при фотографировании со вспышкой.

  • Слайд 4

    Разбиение струи на отдельные капли происходит беспорядочно благодаря наличию на поверхности струи капиллярных волн. Опыт № 1. Внешнее воздействие на струю вызывает на её поверхности капиллярные волны, которые легко наблюдать. Двигая ложкой вверх-вниз можно увидеть, как будет меняться длина капиллярной волны. Капиллярные волны возникают благодаря наличию на поверхности жидкости сил поверхностного натяжения

  • Слайд 5

    Механизм образования капиллярных волн Пусть поверхность жидкости в некотором месте случайно изогнулась, например, стала вогнутой (рис. а). Под действием разности давлений жидкость из соседних участков начнет приливать под вогнутую поверхность, пока поверхность снова не станет плоской. Но движение жидкости не прекратится и будет продолжаться по инерции. Поэтому поверхность станет выпуклой, давление под ней возрастет, и жидкость будет вытекать из-под нее (рис. б) и т. д. Такие колебания в жидкости естественно вызовут аналогичные колебания в соседних участках, то есть возникнет волна.

  • Слайд 6

    Для определения скорости распространения капиллярной волны воспользуемся тем фактом, что гармошка, возникающая на поверхности струи, неподвижна. Это означает, что скорость распространения волны равна скорости течения воды из сопла по абсолютной величине и противоположна ей по направлению. Полученный экспериментально график зависимости между λ и показан на рис.    

  • Слайд 7

    Различные явления, возникающие при воздействии звука на струю жидкости

  • Слайд 8

    Звуковыми (или акустическими) волнами называются распространяющиеся в среде упругие волны, обладающие частотами в пределах 16—20000 Гц. Источником возникновения волнового движения (источником звука) может служить любое тело, способное совершать упругие колебания - мембрана, диффузор, металлическая пластина, струна.

  • Слайд 9

    То, что струя воды восприимчива к звуку, можно пронаблюдать на простом опыте.Опыт № 2. Струйный автогенератор звука.

  • Слайд 10

    Для исследования влияния звуковых волн различной частоты на струю жидкости была собрана специальная установка.

    сосуд с жидкостью, установленный на высоте 0.7 м над столом сопло d=1mm динамик резиновый шланг Генератор звуковых волн

  • Слайд 11

    Было замечено, что при определенной частоте звуковых колебаний, исходящих из динамиков, сплошной (прозрачный) участок струи резко сокращается, а сноп струй слипается, образуя одну внешне совершенно непрерывную струю.

  • Слайд 12
  • Слайд 13

    В процессе естественного образования капель есть некоторая периодичность, но она далека от идеальной: капли получаются немного различными. Каждая из этих капель, обладая своей массой и скоростью, летит по своей траектории, создавая впечатление снопа струй.

  • Слайд 14

    При совпадении частоты звука с частотой естественного образования капель, распад струи начинает происходить раньше и со строгой периодичностью. Звук как бы отрывает от струи через равные промежутки времени одинаковые капли. Эти капли быстро движутся по одной траектории и производят впечатление сплошной слипшейся струи.

  • Слайд 15

    Фото слипшейся струи с использованием стробоскопического эффекта вспышки

  • Слайд 16

    Задача о неустойчивости жидкого цилиндра впервые была решена английским физиком Дж. В. Рэлеем в конце XIX века. Он получил точную оценку для условия роста амплитуды капиллярных возмущений, которая имеет вид: λ > 2π r0 С максимальной скоростью будет расти амплитуда волны, имеющей длину Таким образом, длина сплошного участка струи определяется характером возмущений, сообщаемых струе соплом. Чем больше амплитуда этих возмущений, и чем ближе длина капиллярной волны к значению λm, тем быстрее происходит распад струи на капли, то есть короче оказывается сплошной участок струи.  

  • Слайд 17

    Исследование частоты слипания струи жидкости от физических и химических свойств жидкости

  • Слайд 18

    Были проделаны исследования зависимость частоты слипания струи от следующих характеристик жидкости

  • Слайд 19
  • Слайд 20
  • Слайд 21
  • Слайд 22

    При воздействии частотой в 247 Гц водяной цилиндр сокращался практически втрое, что говорило о возникновении устойчивых капиллярных волн. Из-за более слабого поверхностного натяжения мыльного раствора по сравнению с водой капли гораздо дольше принимали правильную сферическую форму, что видно на фото.

  • Слайд 23

    Разбиение водяного цилиндра на капли происходило строго периодически, что говорит о том, что малый коэффициент поверхностного натяжения и повышенная вязкость не являются определяющими факторами при воздействии звуковой волны на струю жидкости. Важен также химический состав жидкости.

  • Слайд 24

    Выводы:

    Таким образом, в ходе проведенных исследований была установлена зависимость частоты слипания струи от температуры жидкости (прямая зависимость) и от плотности жидкости (обратная зависимость). Установить четкую зависимость частоты слипания струи от коэффициента поверхностного натяжения и вязкости не удалось в силу ограниченной возможности по использованию жидкостей, имеющих различные указанные характеристики. Была установлена большая зависимость частоты слипания струи от химического состава жидкости. У двух ньютоновских жидкостей (молоко и мыльный раствор) с примерно равными физическими характеристиками (вязкость существенно больше, чем у воды, а коэффициент поверхностного натяжения существенно меньше, чем у воды) наблюдалась прямо противоположная реакция на звуковое воздействие. Струя молока не реагировала на звук, а струя мыльного раствора показала наибольшую чувствительность к звуковому воздействию.

Посмотреть все слайды

Сообщить об ошибке