Презентация на тему "Химия элементов VIB подгруппы Cr, Mo, W"

Презентация: Химия элементов VIB подгруппы Cr, Mo, W
Включить эффекты
1 из 32
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
0.0
0 оценок

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Презентация на тему "Химия элементов VIB подгруппы Cr, Mo, W" по химии. Состоит из 32 слайдов. Размер файла 0.49 Мб. Каталог презентаций в формате powerpoint. Можно бесплатно скачать материал к себе на компьютер или смотреть его онлайн с анимацией.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    32
  • Слова
    химия
  • Конспект
    Отсутствует

Содержание

  • Презентация: Химия элементов VIB подгруппы Cr, Mo, W
    Слайд 1

    Лекция №12 Химия элементов VI B подгруппы Cr, Mo, W

  • Слайд 2

    Pt Ir Os Re W Ta Hf La Ba Cs Pd Rh Ru Tc Mo Nb Zr Y Sr Rb Kr Br Se As Ge Ga Zn Cu Ni Rn Xe Fe Ar Ne He At I Mn Cl F Ra Fr Po Bi Pb Tl Hg Au Te Sb Sn In Cd Ag Co Cr V Ti Sc Ca K S P Si Al Mg Na O N C B Be Li H

  • Слайд 3

    Общая характеристика элементов VIB подгруппы Эл. cтроение rат, нм СО Cr [Ar] 3d54s10,126 II, III, VI Mo [Kr] 4d55s1 0,136 (IV, V), VI W [Xe] 4f145d46s2 0,137 (IV, V), VI  rMo ≈ r Wкакследствие лантаноидного сжатия Склонность к проявлению высшей СО растёт Убывание кислотных свойств (H2CrO4и H2MoO4) Активные комплексообразователи (изополи- и гетерополисоединения)

  • Слайд 4

    Нахождение в природе

  • Слайд 5

    Cвойства Cr, Mo, W Твердые, тяжелые, тугоплавкие металлы W – самый тугоплавкий металл Сr – самый твердый металл

  • Слайд 6

    Cr + H2SO4 (разб.)  СrSO4 + H2 Mo + H2SO4 (конц.) H4[MoO4SO4] + SO2+ H2O (MoO2SO4) W + HNO3 + HF  H2[WF8] +NO+ H2O Cr + O2 + NaOH = Na2CrO4 + H2O Окислительное щелочное плавление

  • Слайд 7

    Кислотно-основные свойcтва оксидов и гидроксидов CrO Cr(OH)2 основные Cr2O3 Cr(OH)3 CrO3 H2CrO4 амфотерные кислотные Низшие СО Высшие СО кислотные свойства (H2Cr2O7) + II + III + VI

  • Слайд 8

    Cr(OH)3+ H2SO4 = Cr2(SO4)3 + H2O Cr(OH)3+ NaOH = Na[Cr(OH)4] тетрагидроксохромит натрия Cr2O3 + NaOH = NaCrO2 + H2O хромит натрия t СrO3 - кислотный оксид CrO3 + KOH = K2CrO4+ H2O хромат калия - ярко красные кристаллы при сплавлении

  • Слайд 9

    Соединения Cr, Mo, W +VI K2Cr2O7+ H2SO4(конц.)CrO3 + K2SO4 + H2O CrO3Cr2O3 + O2 (T > 400 °C) cильный окислитель CrO3+ Н2О H2CrO4 PbCrO4, BaCrO4, Ag2CrO4 Хорошо р-римы хроматы щелочных металлов и аммония

  • Слайд 10

    C В кислой среде хроматы переходятв дихроматы: СrO42- +2 H+ = Cr2O72- + H2O хроматы, желтого цвета дихроматы, оранжевого цвета pH 7 [H+] H2CrO4, H2Cr2O7, H2Cr3O10, H2Cr4O13CrO3 изополисоединения Cr2O72- + 2OH-↔ 2CrO42- + H2O процесс полимеризации процесс деполимеризации

  • Слайд 11
  • Слайд 12

    K2Cr2O7+ HCl (конц.)СrCl3 + Cl2+ KCl + H2O  Самостоятельно закончите данное уравнение, подобрав коэффициенты с применением метода полуреакций Дихроматы - сильные окислители: K2Cr2O7+ KI + H2SO4 = I2 + Cr2(SO4)3 + K2SO4 +H2O

  • Слайд 13

    Cr2O72– + SO32– + H+  Cr3+ + SO42– + H2O ПДК, мг/л: 0,05 (CrVI) 0,5 (CrIII) K2Cr2O7+ H2O2 + H2SO4CrO5 + K2SO4 + H2O O Cr O O O O │ Cr │ O O O эфир пероксид хрома гальваностоки Пероксиды СrO5 + H2SO4→ Cr2(SO4)3 + O2 + H2O

  • Слайд 14

    +VI Mo + O2 MoO3 (T = 600 °C) (NH4)2MoO4(p) (NH4)6Mo7O24· 4H2O (NH4)3PO4↝ (NH4)3[PMo12O40]↓ при кристаллизации Гептамолибдат или парамолибдат аммония.Cостоит из семи октаэдрических фрагментов [MoO6] Гетерополисоединение фосфоромолибдат аммония Mo NH3·H2O легко MoO3 (NH4)2MoO4 MoO3 MoO2Cl2 HClконц! MoO22+ - молибденил-ион или при рН = 4 - 5

  • Слайд 15

    Вольфрам. Изополисоединения. [H2W12O42]10- - паравольфрамат Б-ион; [H2W12O40]6- - метавольфрамат-ион [W7O24]6- - паравольфрамат А-ион Na2MoO4—3MoO3 • Mo2O5 • H2O  Молибденовые и вольфрамовые сини (W5O14) Mo4O11, Mo8O23, Mo9O26, W18O49, W20O58, W24O70 и т.д. Zn H+ VI V

  • Слайд 16

    +III (NH4)2Cr2O7Cr2O3+ N2  + H2O  (T = 180 °C) лабораторный способ получения оксида хрома (III)

  • Слайд 17

    CrIII 3d 4s 4p ⇅⇅⇅⇅⇅⇅ ↑↑↑  d2sp3 Cr2O3+ Na2CO3 NaCrO2 + CO2  (T = 500 °C) Cr2O3+K2S2O7Cr2(SO4)3 + K2SO4 (T = 400 °C) (K2SO4 • SO3) Cr2O3 не р-ряется в воде, кислотах и щелочах K3[Cr(CN)6]

  • Слайд 18

    [Cr(H2O)6]3+ [Cr(H2O)5OH]2+ …… [Cr(H2O)3(OH)3]0 [Cr(H2O)2(OH)4]– …… [Cr(OH)6]3– Cr3+ CrOH2+ Cr(OH)3  [Cr(OH)4]– [Cr(OH)6]3– Условно: pH

  • Слайд 19

    Сr(OH)3 HCl KOH  CrCl3 K[Cr(OH)4] K3[Cr(OH)6] S2– H2S Cr3+ + CO32– + H2O  Cr(OH)3 + CO2 SO32– SO2 [Cr(OH)6]3– + Br2 + OH– CrO42– + Br– + H2O

  • Слайд 20

    CrIII CrVI Cr3+ [Cr(OH)6]3- Cr2O72- CrO42- H+ H+ OH- OH- Схема переходов CrIIIв CrVI в различных средах + восстановитель + окислитель

  • Слайд 21

    +II Cr + HCl CrCl2+ H2  CrCl3 + Zn  CrCl2 + ZnCl2 Cr3+ + e ⇄ Cr2+, φ°= –0,41 B Соединения Cr(II) — сильные восстановители CrCl2 + H2O  CrOHCl2 + H2  Cr2+ + 2OH– = Cr(OH)2  Cr(OH)2 + H2O + O2 = Cr(OH)3 H+

  • Слайд 22

    t CrO3 + Al Cr + Al2O3 Получение хрома из оксида осуществляют методом алюмотермического восстановления Основная область применения хрома – легирование железа для получения нержавеющей стали Более подробное описание способов получения хрома и молибдена вы можете найти в дополнительных материалах к лекции № 12 на сайте кафедры

  • Слайд 23

    Дополнительный материал к лекции № 12 Хром, молибден, вольфрам* *Производство вольфрама описано в дополнительных материалах к лекции № 5.

  • Слайд 24

    Хром В металлургии для получения легированных сталей более выгодно использовать не чистый металл (Cr), а его сплав с железом, так называемый феррохром, поскольку ферросплавы значительно дешевле металлов и имеют более низкую температуру плавления. Основная область применения хрома – это легирование сталей и сплавов. Стали, содержащие хром, подразделяются на хромистые,хромоникелевые (пластичные, коррозионноустойчивые);нержавеющие;инструментальные;жаростойкие и жаропрочные. Также на основе добавок хрома получают термостойкие материалы,керметы.

  • Слайд 25

    Получение феррохрома Для выплавки феррохрома применяют хромовую руду – хромистый железняк (FeO · Cr2O3), в котором содержание Cr2O3доходит до62 %, остальное - FeO, MgO, Al2O3, SiO2. Для выплавки углеродистого феррохрома в качестве восстановителя применяют коксик (С), для получения феррохрома с пониженным содержаниемуглерода восстановление ведут кремнием или алюминием. В процессе плавки руды идет восстановление хрома, железа, кремния. 1/3Cr2O3 + C = 2/3Cr + CO - Q 1/3Cr2O3 + 9/7C = 2/21Cr7C3 + CO - Q Температура плавки – 1600-1800 ºС. Железо также восстанавливается углеродом и растворяется в карбиде хрома. карбид хрома

  • Слайд 26

    Содержание углерода в феррохроме может достигать 8 % - это так называемый высокоуглеродистый феррохром. В процессе плавки частично восстанавливается кремний, так что содержание кремния в феррохроме доходит до 2-5 %. В феррохром переходит также часть фосфора и серы, вносимых с шихтой. Восстановительные ферросплавные печи представляют собой мощные электродуговые печи сталеплавильного типа. Они работают в непрерывном режиме. Общий вид ферросплавной печи приведен в доп.материалах лекции № 11. Для получения феррохрома с пониженным содержанием углерода (средне-, мало- и безуглеродистый феррохром) применяют силикотермический и алюмотермический способы, а также продувку кислородом жидкого углеродистого феррохрома с последующим вакуумированием.

  • Слайд 27

    Одновременно протекают реакции восстановления карбидов хрома и железа: (Cr, Fe)хСу+ хSi = х(Cr, Fe) Si + уС При алюмотермическом способе оксид хрома восстанавливают алюминиевой крупкой по реакции: Cr2O3 + 2Al = 2Cr + Al2O3 Таким образом, cредне- и малоуглеродистый феррохром содержит соответственно1-4 и 0,2 - 0,5 % C,безуглеродистый феррохром содержит 0,02 - 0,1 % C. При силикотермическом способе хромовую руду восстанавливают кремнием по реакциям: 2/3Cr2O3 + Si = 4/3Cr + SiO2 2FeO + Si = 2Fe + SiO2 Обезуглероживание продувкой кислородом и вакуумированием ведут в конвертере. Вначале жидкий феррохром продувают кислородом при нормальном давлении, а затем при пониженном давлении (в вакууме).

  • Слайд 28

    Получение хрома Получение металлического хрома из природного хромистого железняка осуществляют в несколько стадий. Первая стадия– окислительное плавление хромита в щелочной среде. 4FeCr2O4 + 8Na2CO3 + 7O2 8Na2CrO4 + 2Fe2O3 + 8CO2 Вторая стадия – растворение полученного спека в кислой среде. При этом происходит перевод хромата в дихромат, а железо в форме частично гидратированного оксида остается в осадке. 2Na2CrO4 + 2H2SO4 = Na2Cr2O7 + 2 NaHSO4 + H2O t Третья стадия – восстановление хрома (VI) до хрома (III) (до Cr2O3). Na2Cr2O7 + 2C  Cr2O3 + Na2CO3 + CO t

  • Слайд 29

    Металлический хром получают электролизом растворов солей хрома (III) или алюмотермическим восстановлением Cr2O3. Cr2O3 + 2Al = Al2O3 + 2Cr Полученный «технически чистый» хром дополнительно очищают перегонкой в вакууме или электролитическим путем.

  • Слайд 30

    Молибден Молибденит (MoS2) – наиболее распространенный и промышленно важный минерал молибдена. После обогащения молибденовых руд концентрат содержит до70 % MoS2. 1. Окислительный обжиг молибденитовых концентратов MoS2 + 3,5O2 MoO3 + 2SO2 500-600 ºC Обжиг проводят в многоподовых печах или в печах кипящего слоя. 2. Возгонка триоксида молибдена Возгонка или испарение MoO3 осуществляется с целью очистки триоксида молибдена. Температура возгонки – 900-1100 ºС. Возогнанный триоксид (огарок) имеет высокую чистоту (99,975 % MоО3). Аппарат для возгонки – электрические печи непрерывного действия с вращающимся кольцевым подом. Краткая технологическая схема получения молибдена

  • Слайд 31

    3. Выщелачивание. Огарок выщелачивают раствором аммиака. Выщелачивание проводят в стальных реакторах, на холоду или при температуре 50-70ºС, концентрация раствора аммиака – 8-10 %. Образуется раствор парамолибдата аммония. 7MoO3 + 6NH3 + 3H2O = (NH4)6Mo7O24 4. Нейтрализация раствора Раствор парамолибдата аммония нейтрализуют соляной кислотой до рН = 2-3 и выделяют осадок молибденовой кислоты. (NH4)6Mo7O24 + 6HCl + 4H2O = 7H2MoO4 + 6NH4Cl 5. Термическое разложение молибденовой кислоты Термолиз молибденовой кислоты протекает при температуре 450-500 ºС в барабанных печах непрерывного действия. H2MoO4 MoO3 + H2O MoO3- порошокбледно-зеленого цвета

  • Слайд 32

    6. Получение порошков молибдена. Наиболее распространен в промышленной практике способ восстановления MoO3 водородом. MoO3 + 3H2 Mo + 3H2O Реакция протекает в две стадии. Вторую стадию ведут при температуре 900-1100 ºС. Молибден получают в виде порошка, который затем превращают в компактный металл методом порошковой металлургии.

Посмотреть все слайды

Сообщить об ошибке