Презентация на тему "Колодец Лотоса"

Презентация: Колодец Лотоса
1 из 16
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
5.0
2 оценки

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Смотреть презентацию онлайн на тему "Колодец Лотоса" по истории. Презентация состоит из 16 слайдов. Для учеников 6-8 класса. Материал добавлен в 2016 году. Средняя оценка: 5.0 балла из 5.. Возможность скчачать презентацию powerpoint бесплатно и без регистрации. Размер файла 3.83 Мб.

Содержание

  • Презентация: Колодец Лотоса
    Слайд 1

    Колодец Лотоса.

  • Слайд 2

    ЗАГАДКА ИЗ ДРЕВНЕГО ЕГИПТА

  • Слайд 3

    В 1912 г. во время раскопок в дельте Нила ученые обнаружили полуразрушенный храм, на стенах которого сохранились письмена.

  • Слайд 4

    "Ты стоишь перед стеной, за ней колодец Лотоса, круглый, как Солнце. В колодец опущены два тростниковых стебля, длина одного из которых три меры, другого — две меры. Стебли перекрещиваются на уровне поверхности воды, а уровень воды в колодце равен одной мере. Кто укажет длину самой длинной прямой, которая может уместиться в основании колодца Лотоса, тот возьмет тростниковые стебли и станет жрецом бога Ра".

  • Слайд 5

    Под текстом задачи было обнаружено пояснение, из которого следует, что она служила испытанием для желающих стать жрецами бога Ра. Вошедший в комнату для решения этой задачи оказывался отрезан от внешнего мира, так что решивший ее становился жрецом, а не решивший умирал голодной смертью. "Через стену колодца Лотоса прошли многие, но мало кто стал жрецом бога Ра. Думай. Цени свою жизнь. Так советуют тебе жрецы бога Ра".

  • Слайд 6

    Наиболее известным источником сведений, связанных с этой задачей, является рассказ писателя-фантаста А.П.Казанцева «Колодец Лотоса». Это история любви могущественной древнеегипетской царицы Хапшетсут и придворного зодчего Сененмута.

  • Слайд 7

    Хатшепсут была единственной в истории Египта женщиной-фараоном. Ей воздавались все подобающие фараонам светские и религиозные почести, ее изображали, как и полагалось настоящему фараону, с привязанной под подбородком бородой. В рассказе А.П. Казанцева Хатшепсут решает сделать Сененмута жрецом, для чего он должен пройти загадочное испытание.

  • Слайд 8

    Задача о Колодце Лотоса

  • Слайд 9

    В рассказе предложен один из вариантов решения задачи, доступный кандидатам на звание жреца. После довольно замысловатых манипуляций, использующих мокрые части тростинок, Сененмуту удается получить приближенное значение диаметра колодца d, равное 37/30.

  • Слайд 10

    Задачу о колодце Лотоса интересно было бы решить в соответствии с уровнем древней математики.

  • Слайд 11

    Пусть AС = 3, BD= 2, EF = 1, требуется определить ВС. Обозначим АВ = a, CD =b, ВС = d. Путем несложных преобразований получаем уравнение a4 - 2а3 + 5а2 -10а + 5 = 0 Однако в Древнем Египте не умели решать уравнений 4-й степени!

  • Слайд 12

    Теорема. Длина отрезка, концы которого лежат на боковых сторонах трапеции, а сам он параллелен ее основаниям и проходит через точку пересечения диагоналей, равна среднему гармоническому длин оснований трапеции: МN = 2аb : (а + b) Кроме того, точка пересечения диаго­налей делит данный отрезок пополам: МО = ab:(а + b)

  • Слайд 13

    Для египтянина естественно было искать решение задач в виде дробей с малыми знаменателями. Если рассматривать дробные числа со знаменателями не более 5, то неплохое приближение диаметра колодца дают дроби 5/4 и 6/5.

  • Слайд 14

    Обе эти дроби хорошо соответствуют духу египетской математики, где было принято записывать произвольную дробь в виде суммы дробей с числителями, равными 1: 5 1 6 1 — = 1 + —, — = 1+ — . 4 4 5 5

  • Слайд 15

    Значение диаметров занесем в таблицу: Заметим, что число 1,2 является половиной среднего гармонического длины диагоналей трапеции: 2 • 3 : (2 + 3) = 1,2. Такие числовые соотношения указывают на гармоничное построение колодца.

  • Слайд 16

    Способ, которым могли бы воспользоваться египетские жрецы при отборе достойных кандидатов, нам не известен. Можно только предполагать, что он был геометрическим. Сможет ли кто-нибудь из вас решить эту задачу новым способом? Учтите – призом будет пятерка по геометрии в четверти!

Посмотреть все слайды

Сообщить об ошибке