Презентация на тему "Математические модели информационных потоков"

Презентация: Математические модели информационных потоков
1 из 12
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
3.0
1 оценка

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Интересует тема "Математические модели информационных потоков"? Лучшая powerpoint презентация на эту тему представлена здесь! Данная презентация состоит из 12 слайдов. Средняя оценка: 3.0 балла из 5. Также представлены другие презентации по информатике для студентов. Скачивайте бесплатно.

Содержание

  • Презентация: Математические модели информационных потоков
    Слайд 1

    © ElVisti Лекция 6 “Математические модели информационных потоков” Дмитрий Владимирович ЛАНДЭ МЕЖДУНАРОДНЫЙ СОЛОМОНОВ УНИВЕРСИТЕТ

  • Слайд 2

    © ElVisti 2 Моделирование информационных потоков Баланс тем Общий характер временной зависимости числа тематических публикаций в сети определяется закономерностями, которые целиком допускают построение математических моделей. Модель, аналогичная модели Бартона-Кеблера, учитывает статическую и динамическую составляющие от общих объемов сообщений по заданной тематикес учетом старения информации: v(T) = 1 – ae-T – be-2T. Организации-генераторы новостной информации в производят поток информации, в среднем постоянный по количеству сообщений. Изменяются во времени лишь объемы сообщений, которые соответствуют той или другой теме. Таким образом, рост количества публикаций по одной теме сопровождается уменьшением публикаций по другим темам: где ni(t) – количество публикаций в единицу времени, а M – общее количество всех возможных тем.

  • Слайд 3

    © ElVisti 3 Линейная модель В некоторых случаях динамика тематических информационных потоков реализуется линейно, то есть количество сообщений в момент времени t можно представить формулой: y(t) = y(t0) + v(t - t0), где y(t) – количество сообщений на времяt, v – середняя скорость увеличения (уменьшения) интенсивности тематического информационного потока во времени. Содержательная составляющая информационного потока может быть оценена как флюктуация информационного потока – изменение стандартного отклонения (t): В случае поведения стандартного отклонения (t)  t, то чем большее значение , тем выше корреляция между текущими и предыдущими сообщениями. В этих случаях  характеризует степень связи между случайными событиями и принимает значение от ½ до 1.

  • Слайд 4

    © ElVisti 4 Примеры, для которых линейная модель адекватна Динамика количества откликов на запрос «семантическ*» Динамика появления документов в информационном потоке, содержащих слово «масон»

  • Слайд 5

    © ElVisti 5 Экспоненциальная модель В некоторых случаях процесс увеличения (роста) актуальности или старения информации описывается экспоненциальной зависимостью, которую можно аппроксимировать такой формулой: N(t) = N(t0)e(t - to) , где  - среднее относительное изменение интенсивности информационного потока. Относительное изменение интенсивности в определенный момент времени исчисляется по формуле: (ti)=(N(ti) – N(ti-1))/N(ti-1). Изменение флюктуаций величины (ti) относительно среднего значения может быть оценена по формуле: Если (t) изменяется как корень квадратный из времени, то можно говорить о процессе с независимыми приращениями. В случае наличия значительной доли зависимых сообщений справедливо: (t) t, причем > ½, говорит о наличии долгосрочной памяти системы.

  • Слайд 6

    © ElVisti 6 Пример, для которого экспоненциальная модель адекватна Посуточный график появления сообщений, содержащих термин «блог» Помесячный график в полулогарифмической шкалепоявления сообщений, содержащих термин «блог»

  • Слайд 7

    © ElVisti 7 Логистическая модель Логистическую модель можно рассматривать как обобщение экспоненциальной модели Мальтуса, которая, предусматривает пропорциональность скорости роста функции ее значения в каждый момент времени: где k – некоторый коэффициент. В случае логистической модели идея заключается в том, чтобы сделать коэффициент в уравнении Мальтуса функцией времени. Наиболее распространенным есть использования константы, которая в явном виде ограничивает рост решения. В нашем случае с этой целью используем емкость N. Тогда правая часть соответствующего выражения представляется в виде: где k – коэффициент Мальтуса, а r – коэффициент, который описывает отрицательные для данной системы процессы, связанные с внутренними факторами.

  • Слайд 8

    © ElVisti 8 Логистическая модель: примеры Динамика объемов публикаций в Интернет по тематике болезни и отхода от деятельности известного политического деятеля Динамика объемов публикаций в Интернет с упоминанием фамилии сенсационно избранного мэра большого города (до выборов и после)

  • Слайд 9

    © ElVisti 9 Логистическая модель: детализация На формальном уровне сопоставим с темой два параметра: продолжительность (характерное “время жизни”) λ и интенсивность D. Продолжительность - промежуток времени, в течение которого тема имеет выраженную актуальность. Интенсивность - величина, которая характеризует порожденное соответствующей темой количество публикаций, усредненное по промежутку λ. Вклад интенсивности D определяется следующим образом: Соответственно, рассматриваются две временные области: 0 0 и t > λс D = 0, для которых решениями являются функции u(t) и v(t). Полное решение получается путем “сшивки” на границе в точкеλ:

  • Слайд 10

    © ElVisti 10 Логистическая модель: уравнения После нормирования параметров пороговой величины N, уравнение для первой области имеет вид: Решение этого уравнения: Уравнение для второй области имеет вид: Решение второго уравнения:

  • Слайд 11

    © ElVisti 11 Логистическая модель: обобщенный график информационного потока

  • Слайд 12

    © ElVisti Спасибо за внимание! Ландэ Д.В dwl@visti.net http://poiskbook.kiev.ua МЕЖДУНАРОДНЫЙ СОЛОМОНОВ УНИВЕРСИТЕТ Киев, Украина

Посмотреть все слайды

Сообщить об ошибке