Содержание
-
Непозиционные системы счисления
Непозиционная система счисления — это такая система счисления, в которой положения цифры в записи числа не зависит величина, которую она обозначает. Система может накладывать определенные ограничения на порядок цифр (расположение по возрастанию или убыванию).Примером непозиционной системы счисления является римская система, в которой в качестве цифр используются латинские буквы. Презентацию выполнили: Асташов Никита и Дарахович Данила
-
Вавилонская система счисления
В древнем Вавилоне культура которого, в том числе и математическая, была довольно высока, существовала весьма сложная Шестидесятеричная система. Мнения историков по поводу того, как именно возникла такая система, расходятся. Одна из гипотез, в прочем не особенно достоверная, состоит в том, что произошло смешение двух племён, одно из которых пользовалось шестеричной системой, а другое – десятичной. Шестидесятеричная система возникла как компромисс между этими двумя системами. В вавилонской шестидесятеричной системе счисления, основанной на позиционном принципе, использовались два символа, два вида клиньев, которые и являются «цифрами» в этой системе счисления
-
Египетская система счисления
Непозиционная система счисления, которая употреблялась в Древнем Египте вплоть до начала X века н.э. В этой системе цифрами являлись иероглифические символы; они обозначали числа 1, 10, 100 и т. д. до миллиона.
-
Унарная система счисления
Уна́рная (едини́чная, ра́зная) систе́масчисле́ния — непозиционная система счисления с единственной цифрой, обозначающей 1. В качестве единственной «цифры» используется «1», чёрточка (|), камешек, костяшка счёт, узелок, зарубка и др. В этой системе число записывается при помощи единиц. Например, 3 в этой системе будет записано, как |||. По-видимому, это хронологически первая система счисления каждого народа, овладевшего счётом.
-
Римская система счисления
Ри́мскиеци́фры — цифры, использовавшиеся древними римлянами в своей непозиционной системе счисления. Натуральные числа записываются при помощи повторения этих цифр. При этом, если большая цифра стоит перед меньшей, то они складываются (принцип сложения), если же меньшая стоит перед большей, то меньшая вычитается из большей (принцип вычитания). Последнее правило применяется только во избежание четырёхкратного повторения одной и той же цифры. Римские цифры появились за 500 лет до нашей эры у этрусков, которые могли заимствовать часть цифр у прото-кельтов
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.