Содержание
-
Урок 22
-
Процедуры и функции
-
Тема урока: понятие подпрограмм. Механизм реализации подпрограмм с помощью процедур и функций
-
I. Повторение материала
Какова структура программы? Обязателен ли заголовок программы? Какие разделы описаний вы знаете? С чего начинается раздел констант? Как описать переменные? С чего начинается основная часть программы? Как ее закончить?
-
При создании программы для решения сложной задачи программисты выполняют разделение этой задачи на подзадачи, подзадачи – на еще меньшие подзадачи и так далее, до легко программируемых элементарных задач. Со временем у каждого программиста через некоторое время появляется большой набор собственных заготовок, неординарных решений и т.д., которые он хотел бы использовать во всех своих творениях. Языки программирования Qbasic и Turbo Pascal позволяют разделять программу на отдельные части, которые называются подпрограммами. Сам термин подпрограмма говорит о том, что она подобна и подчинена основной программе.
-
Подпрограммы решают три важные задачи, значительно облегчающие программирование: избавляют от необходимости многократно повторять в тексте программы аналогичные фрагменты, т.е. сократить объем программы; улучшают структуру программы, облегчая понимание при разборе; уменьшают вероятность появления ошибок, повышают устойчивость к ошибкам программирования и непредвиденным последствиям при модификации. Таким образом, подпрограмма — это повторяющаяся группа операторов, оформленная в виде самостоятельной программной единицы. Она записывается однократно, а в соответствующих местах программы обеспечивается лишь обращение к ней по имени.
-
Общиепринципы выделения подпрограмм:
Если в программе необходимо переписывать одни и те же последовательности команд, то стоит эту последовательность команд оформить в виде подпрограммы; Стоит перенести в подпрограмму подробности, заслоняющие основной смысл программы; Слишком длинную программу полезно разбить на составные части – подобно тому, как книгу разбивают на главы. При этом основная программа становиться похожей на оглавление;
-
При решении задачи могут возникать слишком сложные подзадачи. Целесообразней отладить их отдельно в небольших программах. Добавление этих программ в основную задачу будет легким, если они оформлены как подпрограммы. Все, что вы сделали хорошо в одной программе, вам захочется перенести в новые программы. Для повторного использования частей кода лучше сразу выделять в программе полезные вам подзадачи в виде отдельных подпрограмм.
-
Процедуры предназначены для выполнения некоторой последовательности действий. Любая процедура начинается с заголовка, обязательной частью, (в отличие от заголовка программы). Заголовок состоит из служебного слова Procedure (Sub в языке QBasic), за которым следует имя процедуры, а в круглых скобках — список формальных параметров. После заголовка могут идти те же разделы, что и в программе. Таким образом, общий вид будет следующим: SUB[(формальные параметры)] Procedure[(формальные параметры)]; Список формальных параметров может отсутствовать. Объявление переменных описательная часть Begin тело процедуры тело процедуры EXIT SUBдосрочный выходEXIT SUB END SUB End;
-
Формальные и фактические параметры
Результат выполнения процедуры — это одно или несколько значений. Оно (или они) передается в основную программу как значение ее параметра. При вызове процедуры ее формальные параметры заменяются фактическими в порядке их следования. Фактические параметры — это параметры, которые передаются процедуре при обращении к ней. Число и тип формальных и фактических параметров должны совпадать с точностью до их следования. Формальные параметры — это переменные, фиктивно присутствующие в процедуре и определяющие тип и место подстановки фактических параметров, над которыми производятся действия. Все формальные параметры делятся на два вида: параметры-переменные и параметры-значения.
-
Qbasic
В Qbasic для передачи по значению переменные берутся в круглые скобки. Т. е. передается только копия значения этих параметров, внутри процедуры можно производить любые действия с данными формальными параметрами (допустимыми для его типа), но их любые изменения никак не отражаются на значениях соответствующих фактических параметров, то есть какими они были до вызова процедуры, то такими же и останутся после завершения ее работы. Без круглых скобок переменные передаются по ссылке. Это делается для того, чтобы изменения в теле процедуры значений формальных параметров приводило к изменению соответствующих фактических параметров, таким образом, они и получают новое значение.
-
Turbo Pascal7.0
Параметры-переменные в Turbo Pascal7.0 — это те формальные параметры, перед которыми стоит служебное слово Var. Они передаются по ссылке (передается адрес фактического параметра) тогда, когда необходимо передать некоторые новые значения в точку вызова процедуры из программы, то есть когда нужно, чтобы изменения в теле процедуры значений формальных параметров приводило к изменению соответствующих фактических параметров, таким образом, они и получают новое значение. Параметры-значения — перед ними слово Var не ставится, и идет передача по значению, т. е. передается только копия значения этих параметров, внутри процедуры можно производить любые действия с данными формальными параметрами (допустимые для его типа), но их любые изменения никак не отражаются на значениях соответствующих фактических параметров, то есть какими они были до вызова процедуры, то такими же и останутся после завершения ее работы.
-
Локальные или глобальные переменные
Область действия переменной (идентификатора) - часть программы, где он может быть использован. Область действия переменной определяется местом их объявления. В программе все переменные делятся на глобальные и локальные. Глобальные переменные — это те переменные, которые объявлены в описании основной части, и ее могут использовать любые процедуры и функции данной программы. Переменные, описанные внутри подпрограммы, называются локальными и могут быть использованы только внутри данной подпрограммы. Локальные переменные могут быть описаны как в заголовке программы, так и в разделе описания переменных. При совпадении имен глобальных и локальных переменных, локальные определения в пределах своего действия отменяют действия глобальных, и эти переменные никак не связаны между собой.
-
Какова роль локальных переменных, нельзя ли все переменные описать как глобальные? Подпрограмма должна быть, по возможности, независима от основной программы, поэтому все переменные, нужные только в пределах подпрограммы, должны описываться как локальные. Общение основной программы с подпрограммой должно, как правило, идти через список параметров подпрограммы, что придает ей необходимую гибкость. Локальность или глобальность – понятия относительные. Программа с вложенными в нее подпрограммами - иерархическое дерево. Объект, локальный по отношению к более высокому уровню иерархии, ведет себя как глобальный по отношению к объектам более низкого уровня. Программу можно изобразить в виде блоков (подпрограмм), каждый блок это дом с зеркальными стеклами в окнах. Изнутри через них видно все, что находиться снаружи, внутрь заглянуть нельзя. Программу можно изобразить в виде блоков (подпрограмм), каждый блок это дом с зеркальными стеклами в окнах. Изнутри через них видно все, что находиться снаружи, внутрь заглянуть нельзя.
-
Составить процедуру сложения двух чисел, вводимых с клавиатуры
QB TP
-
Процедура вызывается как оператор, состоящий из имени процедуры. В круглых скобках передаются фактические параметры. В нашем примере, фактические параметры а, в и s передают свои значения соответственно формальным параметрам X, Y и S. После завершения работы процедуры переменные A и B имеют те же значения, что и при вызове, а S получает новое значение. Передача параметров очень важна для процедур и функций. Это процесс, благодаря которому передается информация. Пусть а=3 и в=4. Когда в программе встречается оператор summa((a), (b),S) или summa (a,b,s);, то ЭВМ выполняет следующие действия: - выделяет память для переменных, описанных в процедуре; - присваивает формальным параметрам значения фактических: х:=а (х=3), у:=в (у=4), s:=s; - выполняет операторы процедуры, то есть найдет сумму - полученное значение присвоит переменной S, а переменные A и B остаются прежними, после этого переходит к выполнению следующих действий программы в точке вызова, то есть выполняется следующий оператор, стоящий за обращением процедуры.
-
Составить процедуру нахождения максимального из двух действительных чисел, вводимых с клавиатуры. Используйте процедуру для нахождения максимального значения для четырех чисел.
-
QB TP
-
Составить программу, которая будет находить аb, то есть b-ую степень числа A, где A и B - это целые числа и B>0, вводимые с клавиатуры.
uses crt; DIM A, B AS INTEGERvar a,b:integer; DIM S AS LONGSUB s:longint; stepen (X, Y AS INTEGER,procedure stepen (x,y:integer;var S AS LONG)s:longint); DEFINT I var i:integer; begin S = 1 s:=1; FOR I = 1 TO Yfor i:=1 to y do S = S * X s:=s*x; NEXT END SUBend;
-
begin CLSclrscr; INPUT "a=,b="; A, Bwriteln('a=b=');readln(a,b); Вызов процедуры нахождения степени числа А. CALL stepen(A, B, S) stepen(a,b,s); PRINT "s="; Swriteln('s=',s); readln; ENDend. QB TP
-
TP Домашнее задание Используя процедуру упорядочить значения трех переменных a, b, и с в порядке их возрастания.
-
Урок 23
-
Тема урока: Понятие подпрограмм. Механизм реализации подпрограмм с помощью процедур и функций
Проверка домашнего задания. 1. Ответить на вопросы: а) что такое подпрограмма? б) какие преимущества она дает? в) какие бывают параметры? г) чем отличаются друг от друга формальные и фактические параметры? д) что такое область действия переменной? е) чем отличаются друг от друга глобальные и локальные параметры? 2. Используя процедуру упорядочить значения трех переменных a, b, и с в порядке их возрастания. Решение. В основной программе появятся строки: IF A
-
Описание функции
Функции предназначены для того, чтобы вычислять только одно значение, поэтому ее первое отличие состоит в том, что процедура может иметь новые значения у нескольких параметров, а функция только одно (оно и будет ее результатом). Второе отличие заключается в заголовке функции. Он состоит из словаFunction, за которым идет имя функции, затем в круглых скобках идет список формальных параметров, после чего через двоеточие записывается тип результата функции. Остальное как в процедуре. В Бейсике тип результата не записывается. Кроме того: В теле функции обязательно должен быть хотя бы один оператор присвоения, где в левой части стоит имя функции, а в правой — ее значение. Иначе, значение не будет определено. Таким образом, общий вид такой:
-
Описание функции
Function Function [()] [()]: В Бейсике тип результата не записывается. Эта часть заголовка может отсутствовать. Описательная часть Описательная часть Begin Тело функции Тело функции = :=; End functionEnd;
-
Пример. Составить программу, подсчитывающую число сочетаний без повторения из N элементов по К элементов.
Число сочетаний без повторения считается по формуле:
-
Обозначим: п, k — переменные для хранения введенных чисел; С — переменная для хранения результата. Чтобы подсчитать количество сочетаний без повторения, необходимо вычислить n!, (n—k)!, k!. Опишем функцию, вычисляющую факториал числа n (n!=1*2*...*n).
-
Опишем функцию, вычисляющую факториал числа n (n!=1*2*...*n).
FUNCTION Factorial (N AS function factorial INTEGER)(n:integer):longint; DEFINT Ivari:integer; DEFLNG REZrez:longint; begin REZ = 1 rez:=1; FOR I = 1 TO N for i:=1 to n do REZ = REZ * Irez:=rez*i; NEXT Factorial =REZfactorial :=rez; END FUNCTIONend;
-
Первая строчка в описании функции — это заголовок функции. Служебное словоfunction (функция) указывает на то, что именем factorial названа функция. В скобках перечислен список формальных параметров функции, указаны их имена и задан их тип. Функция factorial имеет один параметр n (число, факториал которого мы будем находить), который является целым числом. Далее в Turbo Pascal 7.0 в заголовке указывается тип значения функции, ее результата. В данном примере результат функции factorial— целое число. За заголовком функции следует описательная часть функции, которая, как и у программы, может состоять из раздела описаний переменных, констант, типов и т.д. В данном примере нам понадобится только раздел переменных. Опишем переменные i (переменная для управления циклом) и rez (для накопления значения факториала).
-
Далее идет раздел операторов (тело функции), в котором подсчитывается значение факториала числа. Результат этого вычисления присваивается имени функции. В тексте программы на Turbo Pascal 7.0 описание функции всегда следует за описанием переменных и до начала основной части, как и описание процедур. После того как функция описана, ее можно использовать в программе. На Quick Basic через главное меню процедуры и функции записываются отдельно. При распечатке программы, они печатаются после основной программы. Мы, для удобства сравнения, печатаем их перед основной программой, как на Паскале. Хотя это не принципиально. Итак, составим программу:
-
-
INPUT "n=,k="; N, K writeln('введите n>=k '); readln(n,k); A1 =factorial (N) a1:=factorial (n); A2 = factorial (K)a2:=factorial (k); A3 = factorial (N – K)a3:=factorial (n-k); C = A1 \ (A2 * A3)c:=a1 div (a2*a3); PRINT "C="; C, A1, A2, A3writeln('c=',c,' ', a1,' ',a2,' ',a3); readln; ENDend. QB TP
-
При выполнении программы описание функции хранится в памяти ЭВМ. Действия функции выполняются тогда, когда в основной части программы необходимо найти значение функции, то есть в момент обращения к этой функции. Ее вызов осуществляется внутри некоторого выражения. Обращение записывается в виде имени функции, за которым следует в круглых скобки список параметров, отделенных друг от друга запятыми. Например: A1 = factorial(n) — есть обращение к функции factorial в QBasic. a1:= factorial(n) —естьобращениекфункцииfactorial в TPascal Параметры, записываемые в обращении к функции, называются фактическими, а параметры, указанные в ее описании, называют формальными. Тип фактических параметров определяется типом формальных параметров. Перед вычислением функции формальным параметрам присваиваются значения фактических параметров. Фактическими параметрами могут быть не только константы и переменные, но также и выражения.
-
Еще раз подчеркнем, что описание функции -это самостоятельная часть программы, имеющая собственные переменные, которым отводится отдельное, не зависящее от основной программы место в памяти ЭВМ. Этим объясняется тот факт, что переменные, именуемые одним именем и используемые как в описании функции, так и в основной программе, фактически являются разными переменными (в примере — переменная n основной части программы и параметр n в описании функции). При выполнении программы машина не путает имена этих переменных, так как области их действия не совпадают. Таким образом, программист может вводить в описание функции различные имена, не заглядывая в другие части программы, что особенно важно при написании больших программ.
-
Написать функцию, подсчитывающую количество цифр целого числа. Используя ее, определить, в каком из двух данных чисел больше цифр.Для решения задачи вспомним, как подсчитать количество цифр?Для этого можно выделять последнюю цифру до тех пор, пока число не станет равным нулю. При этом каждый раз надо увеличивать счетчик на 1 (начальное значение счетчика — 0). Тогда можно описать такую функцию:
-
В заголовке функции указано ее имя — Zifr. Ей передается только один параметр — число, количество цифр которого надо найти. Результат — то же целое число. В разделе переменных описана переменная k — это счетчик цифр. В теле функции с помощью цикла While и выполняются указанные выше действия (увеличение значения счетчика и "удаление" последней цифры). Еще раз заметим, что память для переменной k, которая является локальной, выделяется только тогда, когда начинает свою работу функция. После завершения ее работы эта часть памяти снова освобождается и значение k будет не определено.
-
QB TP
-
Домашнее задание
Ответить на вопросы: Как описывается функция? Каковы отличия функции от процедуры? Указывается ли тип результата в Quick Basic? Чем отличаются друг от друга формальные и фактические параметры? Что такое область действия переменной? Чем отличаются друг от друга глобальные и локальные параметры?
-
Урок 24
-
Тема урока: Рекурсия. Примеры рекурсивного программирования
Проверка домашнего задания. Как описывается функция? Каковы отличия функции от процедуры? Указывается ли тип результата в Quick Basic? Чем отличаются друг от друга формальные и фактические параметры? Что такое область действия переменной? Чем отличаются друг от друга глобальные и локальные параметры?
-
Рекурсия
Подпрограммы в Turbo Pascal и Qbasic могут обращаться к самим к себе. Такое обращение называется рекурсией. Объект, который частично определяется через самого себя, называется рекурсивным. Рекурсивные определения как мощный аналитический аппарат используются во многих областях науки, особенно в математике. Для того чтобы не было бесконечного обращения подпрограммы к самой себе, требуется наличие некоторого условия (условного оператора) в тексте программы, по достижении которого дальнейшее обращение не происходит. Таким образом, рекурсивное программирование может включаться только в одну из ветвей условного оператора, присутствующего в подпрограмме. Некоторые задачи являются рекурсивными по своему определению, поэтому рекурсивные алгоритмы – это точные копии с соответствующего определения.
-
Вычисление факториала натурального числа
Как правило, N! факториал определяют как произведение первых N чисел: N!=123 N, (так называемое итеративное определение). Такое произведение конечно можно легко вычислить с помощью оператора цикла, однако существует и другое определение факториала (рекурсивное): Для того, чтобы вычислить N!, надо знать значение (N—1)! и умножить его на N, при этом 1!=1. В общем виде это можно записать так: Для вычисления факториала опишем функцию, которая будет вычислять его значение. Ей будет передаваться целое число, поэтому у нее есть только один параметр. Результат выполнения — тоже целое число. Например, можно описать такую функцию:
-
FUNCTION faсtorial Function faсtorial (N AS INTEGER)(n:integer):longint; Begin IF N = 1 THEN factorial = 1 if n=1 then factorial: =1 ELSE factorial = N * factorial else (N - 1) factorial:=n*factorial (n-1); END IF END FUNCTIONend;
-
Найдем 3!. Как же будет вычисляться факториал этого числа? Первый вызов этой функции будет из основной программы (Например, а:= factorial(3)), где переменной а присваиваем значение 3!). Прикаждом обращении к функции будет появляться свой набор локальных переменных со своими значениями, в данном случае — переменная n, для которых выделяется память. А после завершения работы эта часть памяти освобождается и переменные удаляются. Так как N1, то пойдем по ветке Else и функции Factorial присваиваем значение n*Factorial(n—l), т. е. надо умножить 3 на значение функции Factorial(2). Поэтому обращаемся второй раз к этой же функции, но передаем ее новое значение параметра -2.
-
Так делаем до тех пор, пока не передадим значение, равное 1. Тогда N=1, а поэтому значение функции Factorial:=1. Таким образом, N=1 — это условие, по которому процесс входа в следующую рекурсию заканчивается. Идет возвращение в точку вызова и подстановка в оператор присвоения значения вычисленной функции. То есть возвращаемся в предыдущую функцию для n=2:Factorial:=n*Factorial(n-l), значит, Factorial:=2*1, следовательно, Factorial(2)=2. И возвращаемся дальше n=3: Factorial:=n*Factorial(n-l), значит, Factorial:=3*2*1, следовательно, Factorial(3)=6.. Таким образом, получаем значение Factorial(3)=6, это значение и присвоим переменной а.
-
Программа вычисления факториала натурального числа
Uses crt; DEFINT NVar n:integer; DEFLNG Aa:longint; FUNCTION factorial (N AS INTEGER)function factorial (n:integer):longint; begin IF N = 1 THEN factorial = 1if n=1 then factorial :=1 ELSE factorial = N * factorial (N - 1) else factorial :=n*factorial (n-1); END IF END FUNCTION end; begin CLS clrscr; INPUT "n="; N writeln('n='); readln(n); A= factorial (N)a:=factorial (n); PRINT”A=”;A writeln('a=',a); readln; ENDend. QB TP
-
Если для факториала, на первый взгляд, рекурсивное определение выглядит сложнее чем итеративное, то для чисел Фибоначчи рекурсивное определение выглядит для вычисления лучше чем прямая формула. рекурсивное определение Похожие рекурсивные формулы можно вывести также и для многих других математических определений. Можноорганизовать вычисления и без рекурсивных соотношений, но использование рекурсии позволяет легко запрограммировать вычисления по рекурсивным формулам. Кдостоинствам рекурсии можно отнести то, что она позволяет с помощью конечного выражения задать бесконечное вычисление, причем алгоритм вычисления не будет содержать повторений. Многие задачи не содержат явно в себе рекурсию, однако некоторые из них можно свести к рекурсивным. прямое определение
-
Нахождение НОД (наибольшего общего делителя) двух натуральных чисел
Способнахождения этого значения - алгоритм Евклида. Пусть есть два целых числа а и b. Если а=b, то НОД(а,b)=а. Если а>b, то НОД(а,b)=НОД(а-b,b). Если а
-
Составим следующую функцию и программу:
Usescrt; DEFLNG A-Bvar a,b:longint; FUNCTION nod (a AS LONG, function nod (a,b:longint): longint; b AS LONG) begin IF A = B THEN nod = A if a =b then nod:=a ELSE else IF A > B THENif a>b then nod:=nod(a - b,b) nod = nod(A - B, B):EXIT FUNCTION ELSE nod = nod(A, B – A)else nod:=nod(a,b- a) END IF END FUNCTIONend; begin CLSclrscr; INPUT "a,b="; A, Bwriteln('a=b=');readln(a,b); A = nod(A, B)a:=nod(a,b); PRINT "nod="; Awriteln('nod= ',a); readln; ENDend QB TP
-
Перевод натурального числа из десятичной системы счисления в двоичную
Для решения этой задачи рассмотрим сначала, как перевести число из десятичной системы счисления в двоичную. Пусть есть число 39, которое и надо представить в двоичной системе. Для этого разделим его на 2, получим целую часть и остаток от деления. Целую часть снова делим на 2 и получаем целую часть и остаток. Так делаем до тех пор, пока целую часть можно делить на 2 (то есть пока она не станет, равной 1). Теперь, начиная с этой единицы, выписываем в обратном порядке все остатки от деления, это и будет запись числа 39 в двоичной системе счисления: 3910=1001112. Таким образом можно переводить любое натуральное число из десятичной системы счисления в двоичную, а также и другие системы (например, восьмеричную или шестеричную).
-
uses crt; DEFLNG N var n:longint; SUB rec (N AS LONG) procedure REC (n:longint); begin IF N > 1 THEN rec (N \ 2)if n>1 then rec(n div 2); PRINT N MOD 2;write(n mod 2); END SUB end; begin CLS clrscr; INPUT "n="; N writeln('n=');readln(n); rec (N)rec(n); readln; END end. QB TP Результат работы программы при N=39 выводится на экран: 100111Первая цифра (1) выводится на экран из последнего вызова, следующая цифра (0) из предпоследнего и так далее, последняя (1) — из первого. Таким образом, вывод очередной цифры происходит перед тем, как выйти из данной функции.
-
Определить, является ли заданное натуральное число простым
Суть заключается в том, что если нельзя извлечь рекурсию из постановки задачи, то можно расширить задачу, обобщить ее (например, введя дополнительный параметр). Удачное обобщение дает возможность увидеть рекурсию. После этого возвращаемся к частному случаю и решаем исходную задачу. Данную задачу можно обобщить, например, так: определить, верно ли, что заданное натуральное число N не делится ни на одно число, большее или равное М, но меньшее N. При этом значения числа М находятся в промежутке от 2 до N. Истина может быть в двух случаях: - Если M=N; - N не делится на М и истина для чисел М+1 и N. N не делится на М — это значит, что остаток от деления N на М не равен 0.
-
Программа определения, является ли заданное натуральное число простым.
uses crt; DEFINT M-Nvar m,n,S:integer; FUNCTION function prost Prost (M AS INTEGER, N AS INTEGER) (m,n:integer):boolean; begin IF N = M THEN prost = -1: EXITif n=m then prost :=true FUNCTION ELSE prost = (N MOD M 0) else prost:=(n mod m0) ANDand prost(M + 1, N)prost(m+1,n); ЕND IF END FUNCTIONend; begin CLS clrscr;
-
INPUT "n="; N write('n=');readln(n); M = 2 m:=2; prost(m,n); IF prost(M, N) 0 THEN if prost(m,n) then write(n,‘- PRINT N; "-простое” простое ') ELSE PRINT N; “-составное” else write(n,'-состовное '); END IF readln; END end. QB TP Домашнее задание. Найдите все простые числа от 2 до 50.
-
Урок 25
-
Тема урока: Применение подпрограмм при решении задач
Ход урока. I. Проверка домашнего задания. Ответить на вопросы: Чем отличаются друг от друга глобальные и локальные параметры? Что такое рекурсия? Как избавиться от бесконечного обращения подпрограммы к самой себе? Все ли задачи можно свести к рекурсивным? Проверка домашней задачи. Найдите все простые числа от 2 до 50. В предыдущей задаче заменить INPUT "n="; N на цикл FOR N=2 to 50
-
Составить программу нахождения суммы элементов целочисленного массива, состоящего из 20 элементов.
Опишем две процедуры: формирования массива; вывода массива; функцию нахождения суммы элементов Эти процедуры и функции будем использовать в основной части. Значения элементов массива вводим с помощью генератора случайных чисел.
-
В приведенной ниже программе процедура Init отвечает за заполнение массива случайными числами, процедура Print отвечает за вывод элементов массива.
uses crt; CONST c = 20const c=20; type mas=array[1..c] of integer; DIM A(C) AS INTEGERvar a: mas; DEFINT Pp:integer; SUB init (M() AS INTEGER)procedure init (var m: mas); DEFINT Ivar i:integer; begin RANDOMIZE TIMERrandomize;
-
FOR I = 1 TO Cfor i:=1 to c do M(i) = RND * 45 – 22m[i]:=trunc(random(45))-22; NEXT END SUBend; SUB print (M() AS INTEGER) procedure print (var m:mas); DEFINT Ivar i:integer; begin FOR I = 1 TO Cfor i:=1 to c do PRINT M(I);” “;write(m[i],' '); NEXT END SUBend;
-
Функция Summa находит сумму элементов массива, процедура upor упорядочивает элементы массива. Для упорядочения элементов массива воспользуемся следующим алгоритмом: Берем первый элемент и сравниваем его со всеми последующими. Если они не равны, то меняем их местами и продолжаем сравнивать.
FUNCTION summa (M() AS INTEGER) function summa (var m: mas):integer; DEFINT I, S var i,s:integer; begin S = 0 s:=0; FOR I = 1 TO C for i:=1 to c do S = S + M(I) s:=s+m[i]; NEXT Summa = S summa:=s; END FUNCTION end;
-
SUB upor (M() AS INTEGER)procedure upor (var m: mas); DEFINT I-J var i,j,z:integer; begin FOR I = 1 TO C – 1 for i:=1 to c-1 do FOR J = I + 1 TO C for j:=i+1 to c do IF M(I) m[i] then M(I), M(J) begin NEXT J, I z:=m[j];m[j]:=m[i];m[i]:=z; end; END SUB end;
-
Вид основной программы
begin CLS clrscr; CALL init(A()) init(a); CALL print(A()) print(a); PRINT CALL upor(A()) upor(a); CALL print(A()) print(a); PRINT writeln; p = summa(A()) p:=summa(a); PRINT "summa="; P writeln('s=',p); readln; ENDend. QB TP
-
Пример 2Cоставить процедуру упорядочения массива.Для упорядочения элементов массива воспользуемся следующим алгоритмом:Берем первый элемент и сравниваем его со всеми последующими. Если они не равны, то меняем их местами и продолжаем сравнивать.В итоге на последнем месте окажется самый маленький (или самый большой) в зависимости от знака неравенства.Далее, берем второй элемент, третий и так до предпоследнего.
SUB upor (M() AS INTEGER) DEFINT I-J FOR I = 1 TO C – 1 FOR J = I + 1 TO C IF M(I) m[i] then begin z:=m[j];m[j]:=m[i];m[i]:=z;end; end;
-
Составьте процедуру нахождения максимального элемента и его индекса в одномерном целочисленном массиве.
Для решения задачи в процедуре задаем начальный максимум и его индекс. Например, первый элемент массива. Затем сравниваем максимум с каждым элементом массива и если найдем элемент, больший максимума, то перезапоминаем максимум и идем далее. SUB MINMAX (M() AS INTEGER Procedure minmax MAX AS INTEGER, IND AS INTEGER) (m:mas; var max, ind:integer); DEFINT I var i:integer; begin MAX = M(1): IND = 1max:=m[1];ind:=1; FOR I = 1 TO Cfor i:=1 to c do IF MAX
-
Составьте процедуры:- заполнения целочисленного массива A(20) датчикомслучайных чисел;-печать массива;- нахождение одинаковых элементов в массиве с указанием их индексов.
Первые две процедуры возьмем из предыдущих примеров. Алгоритм нахождения одинаковых элементов состоит в следующем: 1. Каждый элемент массива, кроме последнего, (докажите почему) сравниваем со всеми идущими после него. 2. В случае нахождения одинаковых, печатаем их индексы. SUB RAVN (M() AS INTEGER)procedure RAVN (var m: mas); DEFINT I-J var i,j:integer; begin FOR I = 1 TO C - 1 for i:=1 to c-1 do FOR J = I + 1 TO C for j:=i+1 to c do IF M(I) = M(J) THEN PRINT I, J if m[i]=m[j] then writeln (i,' ',j); NEXT NEXT END SUB end; TP QB
-
Домашнее задание.
Ответить на вопросы: Чем отличаются друг от друга глобальные и локальные параметры? Что такое рекурсия? Как избавиться от бесконечного обращения подпрограммы к самой себе? Все ли задачи можно свести к рекурсивным? Как описывается функция? Каковы отличия функции от процедуры? Указывается ли тип результата в Quick Basic? Чем отличаются друг от друга формальные и фактические параметры? Что такое область действия переменной?
-
Урок 26
-
Тема урока: Применение подпрограмм при решении задач
Ход урока. I. Проверка домашнего задания. Ответить на вопросы: Чем отличаются друг от друга глобальные и локальные параметры? Что такое рекурсия? Как избавиться от бесконечного обращения подпрограммы к самой себе? Все ли задачи можно свести к рекурсивным? Как описывается функция? Каковы отличия функции от процедуры? Указывается ли тип результата в Quick Basic? Чем отличаются друг от друга формальные и фактические параметры? Что такое область действия переменной?
-
Дана строка, состоящая из слов разделенными одним пробелом.
Составить процедуру: А) определяющую количество слов в строке; Б) вывода на экран этих слов; В) печатающие слова по возрастанию их длин; Г) проверяющие слова, являются ли они палиндромами.
-
Составляем процедуру определяющую количество слов в строке.
Uses crt; CONST N = 30const n=30; DIM B(N) AS STRINGtype mas=array[1..n] of string; var b:mas; DIM ST AS STRINGst:string; DEFINTKk:integer; В процедуре разбиваем предложения на слова и считаем их количество. SUB slowa (ST AS STRING, B() procedure slowa (st:string;var AS STRING, K AS INTEGER) b:mas;var k:integer); DEFINT Ivar i:integer; begin; K = 1k:=1; FOR I = 1 TO LEN(ST) – 1 for i:=1 to length(st)-1 do begin
-
Пока не встретился пробел IF MID$(ST, I, 1) " " THEN begin B(K) = B(K) + MID$(ST, I, 1) if st[i] ' ' then b[k]:=b[k]+st[i] ELSE else IF I LEN(ST) - 1 THEN if ilength(st)-1 then K = K + 1: B(K) = “” begin k:=K+1;b[k]:='';end; END IF NEXT end; END SUB end;
-
SUB prin (B() AS STRING, procedure print (var b:mas); K AS INTEGER) var i:integer; begin DEFINT I FOR I = 1 TO K for i:=1 to k do PRINT B(I); " "; write (b[i],' '); NEXT END SUB end; Печатаем массив слов
-
Упорядочиваем массив слов по возрастанию их длин SUB upor (B() AS STRING, Procedure upor (var b:mas); K AS INTEGER) DEFINT I-J var i,j:integer; z:string; begin FOR I = 1 TO K-1 for i:=1 to k-1 do FOR J = I + 1 TO K for j:=i+1 to k do IF LEN(B(I))
-
Проверяем слова, являются лиони палиндромами.
SUB palindrom (B() AS STRING, procedure palindrom K AS INTEGER) (var b:mas;var k:integer); DEFINT I-J var i,j:integer; DEFSTR Z z:string; label 10; begin FOR I = 1 TO K for i:=1 to k do begin Z = B(I) z:=b[i]; FOR J = 1 TO LEN(B(I)) for j:=1 to length (b[i]) do IF MID$(Z, J, 1) MID$ if z[j]z[length(b[i])-j+1] (Z, LEN(B()) - J + 1, 1) then THEN PRINT z; " непалиндром": begin writeln(z, GOTO 10 ‘непалиндром'); goto 10;end; NEXT PRINT Z; " палиндром“ writeln(z,' палиндром'); 10 NEXT 10: end; END SUB end; begin CLS clrscr; INPUT "предложение"; st write('st=');readln(st);
-
Основная программа. Добавляем пробел в конце предложения. ST = ST + " " st:=st+' '; CALL slowa(ST, B(), K) slowa(st,b,k); PRINT "slow="; K writeln( 'слов =' ,k); CALL print(B(), K) print(b); CALL upor(B(), K) upor(b); PRINT writeln; CALL print(B(), K) print(b); PRINT writeln; CALL palindrom(B(), K) palindrom(b); readln; END end. QB TP
-
Составить процедуру для заполнения двумерного массива целыми случайными числами. Найти: первый отрицательный элемент; максимальный элемент массива; одинаковые элементы массива; поменять местами первый отрицательный и максимальный элемент. Для решения этой задачи составим соответствующие процедуры.
-
Процедура заполнения массива целыми случайными числами
Начало основной программы uses crt; CONST C = 3 const c=3; DIM A(C, C) AS INTEGER type mas=array[1..c,1..c] of integer; var a:mas; DEFINT D, F, I-J, M max,im,jm:integer; io,jo,f:integer;
-
Процедура заполнения массива случайными числами begin SUB init (M() AS INTEGER) procedure init (var m:mas); DEFINT I-J var I,J:integer; begin RANDOMIZE TIMER RANDOMIZE; FOR I = 1 TO C FOR i:= 1 TO c do FOR J = 1 TO C FOR j:= 1 TO c do M(I, J) = RND * 5 – 2 m[i, j]:=trunc(Random ( 5)) - 2 NEXT NEXT END SUB end;
-
Процедура вывода массива на экран
SUB PRIN (M() AS INTEGER) procedure PRINT(m:mas); DEFINT I-J var I,J:integer; begin FOR I = 1 TO C FOR i:= 1 TO c do begin FOR J = 1 TO C FOR j:= 1 TO c do PRINT M(I, J); " "; write( m[i, j]:4); NEXT PRINT writeln; NEXT end; END SUB end;
-
Процедура нахождения одинаковых элементов в массиве
SUB odinak (M() AS INTEGER) procedure odinak (m :mas); DEFINT I-L var I,j,k,l:integer; begin FOR I = 1 TO C FOR i:= 1 TO c do FOR J = 1 TO c FOR j:= 1 TO c do ‘PRINT I; J; "="; {PRINT i; j; "=";} FOR K = 1 TO C FOR k:= 1 TO c do FOR L = 1 TO C FOR l:= 1 TO c do IF ((I K) OR (J L)) AND IF ((i k) OR (j l)) AND (M(I, J) = M(K, L)) (m[i, j] = m[k, l]) THEN PRINT K; L; THEN write (i,j,' ', k, l,' '); NEXT L, K NEXT J, I END SUB END;
-
Процедура нахождения первого отрицательного элемента
SUB otr (M() AS INTEGER, IO, procedure otr (var m:mas; JO AS INTEGER) var io,jo:integer); DEFINT I-J var I,J:integer; begin FOR I = 1 TO C FOR i:= 1 TO c do begin FOR J = 1 TO C FOR j:= 1 TO c do IF M(I, J)
-
Процедура нахождения максимального элемента массива
SUB maxmin (M() AS INTEGER, procedure maxmin (var m:mas; MAX, IM, JM AS INTEGER) var max,im,jm:integer); DEFINT I-J var I,J:integer; begin Max = N(1, 1): IM = 1: JM = 1 max:= m[1,1]; im:=1; jm:=1; FOR I = 1 TO C FOR i:= 1 TO c do begin FOR J = 1 TO C FOR j:= 1 TO c do IF max
-
Основная программа имеет вид.Она становится компактной и легко читаемой
begin CLS clrscr; CALL init(A()) init(a); CALL PRIN(A()) PRINT(a); CALL odinak(A()) odinak(a); PRINT writeln; CALL otr(A(), IO, JO) otr(a, io, jo); PRINT "1-ый отр = "; A(IO, JO), writeln('1-ый отр = ', a[io, jo], IO; JO ‘‘, io, jo); CALL maxmin(A(), max, IM, JM) maxmin(a, max, im, jm); PRINT "max="; max, im; jm writeln('max=', max,' ', im, jm);
-
Меняем местами первый отрицательный и максимальный элемент. f = A(io, jo): A(io, jo) = A(im, jm):f:= a[io, jo]; a[io, jo]:=a[im, A(im, jm) = f jm]; a[im, jm]:= f; PRINT writeln; CALL PRIN(A()) PRINT(a); Readln; END end. QB TP
-
Контрольная работа
Вариант 1 Найти сумму цифр числа. Среди чисел из интервала от А до В найти все простые. Каждый элемент одномерного массива A(K), заполненного натуральными числами, замените наибольшим простым делителем этого элемента. Вариант 2 Составьте программу, проверяющую, является ли число палиндромом. Определить, является ли число совершенным, то есть равно ли оно сумме своих делителей, кроме самого себя. Найдите наибольший простой делитель среди всех делителей каждого элемента данного натурального массива A(K).
-
Вариант 3 1. Дано N чисел. Вывести на экран наибольшую из первых цифр заданных чисел. 2. Составить программу разложения данного числа на простые множители. 3. В массиве А(К), заполненным натуральными числами, определите количество элементов, являющихся простыми числами, индексы которых также простые числа. Вариант 4 1. Имеется трехзначное число, цифры которого различны. После зачеркивания в нем средней цифры остается двузначное число, являющееся делителем данного. Найдите N-первых таких трехзначных чисел. 2. Даны координаты трех вершин треугольника. Найти длины всех его сторон. 3. В массиве А(К), заполненным натуральными числами, замените значения элементов, индексы у которых простые числа, на значения соответствующих индексов.
-
Ответы к контрольной работе:
Вариант 1 Тест: 12 Ответ 3 Тест: 347 Ответ 14 2. Тест: А=2 В=10 Ответ 3,5,7 3. Тест: К=5 6, 7, 10, 32, 5 Ответ: 3, 7, 5, 2, 5 Вариант 2 1. Тест: 12721 Ответ: палиндром Тест: 127 Ответ: не палиндром 2. Тест: 6, 28, 496 Ответ: совершенное Тест: 7 Ответ: не совершенное 3. Тест: К=5 34, 64, 295, 24, 100 Ответ: 19 Тест: К=3 6, 7, 10 Ответ: 7 Вариант 3 1. Тест: N=3 25, 730, 1995 Ответ: 7 2. Тест: 6 Ответ: 1 2 3 Тест: 36 Ответ: 2 2 3 3 3. Тест: К=7 5, 6, 7, 10, 1, 3, 2 Ответ: 3 Вариант 4 1. Тест: N=3 Ответ: 105, 108, 110 2. Тест: (0, 0), (0,4), (3,0) Ответ: 3, 4, 5 3. Тест: К=7 5, 6, 7, 10, 1, 3, 2 Ответ: 1, 6, 3,10, 5, 3, 7
-
Задачи для самостоятельного решения
Вариант 1 Используя процедуру, вычислить значение выражения:y=a1x4+a2x3+a3x2+a4x+a5, гдекоэффициенты a1, а2, а3, а4, а5 и х — это числа, вводимые с клавиатуры. Определить, является ли число простым. Даны действительные числа S и T. Получить F(t, -2*s, 1.17) + F(2.2, t, t-s), где F(A,B,C) = (2*A – B - SIN(C))/ (5+ABS(C)). Вариант 2 Найти суммуцифр числа. Среди чисел из интервала от А до В найти все простые. Даны действительные числа S и T. Получить G(1.2, s) + G(t, s) + G(2*s-1, s*t), где G(A,B) = (A2 + b2)/(A2 + 2*A*b + B2 + 3*B2 + 4)
-
Вариант 3 1. Найти первую цифру числа. 2. Составьте программу, проверяющую, является ли число палиндромом (например, число 12721 — палиндром). 3. Каждый элемент одномерного массива, заполненного натуральными числами, замените наибольшим простым делителем этого элемента. Вариант 4 Определить, является ли число совершенным, то есть равно ли оно сумме своих делителей, кроме самого себя (используя преобразованную функцию из предыдущего примера). Составить программу разложения данного числа на простые множители. Даны действительные числа А, В, С. Получить max(a, a+b) + max(a, b+c)/ (1 + max(a + b*c, 1.15)
-
Вариант 5 Составить программу, вычисляющую наименьшее общее кратное четырех заданных с клавиатуры чисел. Определить, является ли число совершенным, то есть равно ли оно сумме своих делителей, кроме самого себя Даны действительные числа S,T. ПолучитьH(s,t) + max(H(s-t, s*t)2, H(s-t, s+t)4) + H(1,1), где H(A,B) = A/(1+A2) + B/(1+B2)-(A2-B2) Вариант 6 Составить программу нахождения наибольшего общего делителя нескольких чисел, используя функцию нахождения НОД двух чисел. Сколько натуральных чисел от 20 до 120 не взаимно простых с 30? Даны натуральное число N. Среди чисел 1,2, ..., N найти все, которые можно представить в виде суммы квадратов двух натуральных чисел. (Определить процедуру, позволяющую распознавать полные квадраты.)
-
Вариант 7 1. Составить программу, вычисляющую наименьшее общее кратное четырех заданных с клавиатуры чисел. 2. Найти натуральное число, произведение всех делителей которого равно 5832. 3. Даны действительные числа X(1),Y (1), ..., X(10),Y(10). Найти периметр 10-угольника, вершины которого имеют соответствующие координаты. (Определить процедуру нахождения расстояния между двумя точками, заданными своими координатами. Вариант 8 Дано четыре числа. Вывести на экран наибольшую из первых цифр заданных чисел. Например, если а=25, b=730, c=127, d=1995, то должна напечататься цифра 7. Проверьте утверждение, что если 2(N-1)-1 число простое, то число вида 2N*{2(N+1)-1} является совершенным. (т. Эйлера) Даны натуральное число N, действительные числа X(1),Y(1), ...,X(N),Y(N). Найти площадь многоугольника, вершины которого при некотором обходе имеют координаты X(1,)Y(1), ... ,X(N),Y(N). (Определить процедуру вычисления площади треугольника по координатам его вершин.)
-
Вариант 9 1. Даны три натуральных числа. Найдите НОД наибольшего и наименьшего из этих чисел. 2. Найти натуральные числа с 2 до 1000 такие, что числа М,М+10, М+14 все были простыми. 3. Дано четное число N. Проверить для этого числа гипотезу Гольдбаха. Эта гипотеза (по сегодняшний день не опровергнутая и полностью недоказанная) заключается в том, что каждое четное N>=2, представляется в виде суммы двух простых чисел. (Определить процедуру распознавания простых чисел) Вариант 10 1. Имеется трехзначное число, цифры которого различны. После зачеркивания в нем средней цифры остается двузначное число, являющееся делителем данного. Найдите все такие трехзначные числа. 2. Найти все простые натуральные числа от 2 до 1000, чтобы числа 2*P2+1 также были простые. 3. Дано натуральное число N. Выяснить имеются ли среди чисел N, N+1, ...2*N близнецы, т.е. простые числа, разность между которыми равна двум. (Определить процедуру распознавания простых чисел)
-
Вариант 11 Найдите все трехзначные числа, кратные семи, у которых сумма цифр тоже кратна семи, Если найденное число оканчивается нечетной цифрой, то определите, будет ли оно простым числом. Проверьте утверждение: если числа Р и 8*Р2+1 простые, то число 8*P2+2*P+1 также простое. (2
-
Вариант 13 1. Составьте программу, проверяющую, является ли число палиндромом (например, число 12721 — палиндром). 2. У числа 600 найдите сумму делителей и их число. Найдите наибольший простой делитель среди всех делителей каждого элемента данного натурального массива. (34, 64, 225, 24, 100 НД=19) Вариант 14 Сколько натуральных чисел меньших 1000 не делится ни на 5, ни на 7? Найти натуральное число, зная, что оно имеет два простых делителя, а всего 6 делителей, сумма которых равна 28. Каждый элемент одномерного массива, заполненного натуральными числами, замените наибольшим простым делителем этого элемента.
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.