Презентация на тему "Что наша жизнь - игра..." 7 класс

Презентация: Что наша жизнь - игра...
Включить эффекты
1 из 44
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
0.0
0 оценок

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Посмотреть и скачать презентацию по теме "Что наша жизнь - игра..." по математике, включающую в себя 44 слайда. Скачать файл презентации 1.19 Мб. Для учеников 7 класса. Большой выбор учебных powerpoint презентаций по математике

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    44
  • Аудитория
    7 класс
  • Слова
    алгебра
  • Конспект
    Отсутствует

Содержание

  • Презентация: Что наша жизнь - игра...
    Слайд 1

    Что наша жизнь? – игра…проект-исследование

    Выполнила учитель математики МОУ «Лицей №1» города Балаково Хрычкина Елена Федоровна

  • Слайд 2

    Теория игр — математический метод изучения оптимальных стратегий в играх.

  • Слайд 3

    Теория игр — это раздел прикладной математики, точнее — исследования операций. Чаще всего методы теории игр находят применение в экономике, чуть реже в других общественных науках — социологии, политологии, психологии, этике и других. Начиная с 1970-х годов её взяли на вооружение биологи для исследования поведения животных и теории эволюции. Очень важное значение она имеет для искусственного интеллекта и кибернетики, особенно с проявлением интереса к интеллектуальным агентам.

  • Слайд 4

    История

    Создатели теории игр Джон фон Не́йман- венгро-американский математик Оскар Моргенштерн- американский экономист

  • Слайд 5

    Томас Кромби Шеллинг американский экономист, лауреат Нобелевской премии 2005 г. «За расширение понимания проблем конфликта и кооперации с помощью анализа в рамках теории игр».

  • Слайд 6

    Что такое игра?

    Игра - это совокупность правил, определяющих возможные действия (чистые стратегии) участников игры.

  • Слайд 7

    Правила игры

    Под "правилами игры" подразумевается система условий, регламентирующая возможные варианты действий обеих сторон.

  • Слайд 8

    Что такое стратегия игры

    Стратегией игрока называется совокупность правил, однозначно определяющих последовательность действий игрока в каждой конкретной ситуации, складывающейся в процессе игры.

  • Слайд 9

    Классы игр

    Игры- шутки Симметрия Выигрышные позиции Анализ с конца - поиск выигрышных позиций

  • Слайд 10

    Игры- шутки

    1.Двое ломают шоколадку 6×8. за ход разрешается сделать прямолинейный разлом любого из имеющихся кусков вдоль углубления. Проигрывает тот, кто не может сделать ход. Выигрывает первый

  • Слайд 11

    2. Двое по очереди ставят ладей на шахматную доску так, чтобы ладьи не били друг друга. Проигрывает тот, кто не может сделать ход. Выигрывает второй

  • Слайд 12

    11111 11111 22222 22222

    3. На доске написано 10 единиц и 10 двоек. За ход разрешается стереть две любые цифры и, если они были одинаковыми, написать двойку, а если разными – единицу. Если последняя оставшаяся на доске цифра – единица, то выигрывает первый игрок, если двойка- то второй. Выигрывает второй

  • Слайд 13

    1? 2? 3? 4?... 18 ?19? 20 4.На свободное место можно поставить за один ход или «+» или «-». Если сумма четная, то выигрывает первый, если же нечетная, то – второй. Выигрывает первый

  • Слайд 14

    5. На доске написаны числа 35 и 41 (38 и 42). За один ход можно дописать еще одно натуральное число – разность любых двух имеющихся на доске чисел, если она еще не встречалась. Проигрывает тот, кто иии не может сделать ход. Выигрывает первый

  • Слайд 15

    Задачи на четность

    1. На плоскости расположены 11 шестеренок, соединенных по цепочке. Могут ли все шестеренки цепочки вращаться? Нет

  • Слайд 16

    1.Конь вышел с поля а1 и через несколько ходов вернулся на это поле. Докажите, что он сделал четное число шагов.

    2. Может ли конь пройти с поля а1 на поле h8, побывав по дороге на каждом из остальных ровно один раз.

  • Слайд 17
  • Слайд 18

    Простые числа

    3. Найдите все пары простых чисел таких, что их сумма и их разность – тоже простые числа.

  • Слайд 19

    Задача про кузнечика

    5. Кузнечик прыгал по прямой. Первый раз он прыгнул на 1см в какую-то сторону, во второй раз - на 2см, в третий –на 3см и так далее. Докажите, что после 1001 прыжка он не может оказаться там, где начинал.

  • Слайд 20

    Симметрия

    1. Двое по очереди кладут пятирублевые монеты на стол прямоугольной формы, причем так, чтобы они не накладывались друг на друга и не свисали со стола. Проигрывает тот, кто не может сделать ход. Выигрывает первый

  • Слайд 21

    2.Двое по очереди ставят слонов в клетки шахматной доски так, чтобы слоны не били друг друга. (Цвет слонов не имеет значения). Проигрывает тот, кто не может сделать ход. Выигрывает второй

  • Слайд 22

    3. Имеется две кучки камней – по семь в каждой. За ход разрешается взять любое количество камней, но только из одной кучки. Проигрывает тот, кому нечего брать. Выигрывает второй

  • Слайд 23

    4. На окружности расставлено 20 точек. За ход разрешается соединить любые две из них отрезком, не пересекающим ранее проведенных отрезков. Проигрывает тот, кто не может сделать ход. Выигрывает первый

  • Слайд 24

    5. У ромашки а) 12 лепестков; б) 11 лепестков. За ход разрешается оторвать либо один лепесток, либо два рядом растущих лепестка. Проигрывает тот, кто не может сделать ход. Выигрывает второй

  • Слайд 25

    6. Двое по очереди разламывают шоколадку 5×10. За ход разрешается сделать прямолинейный разлом любого из имеющихся кусков вдоль углубления. Выигрывает тот, кто первым отломит дольку 1×1 Выигрывает первый

  • Слайд 26

    Выигрышные позиции

    1. Ладья стоит на поле а1. За ход разрешается сдвинуть ее на любое число клеток вверх. Выигрывает тот, кто поставит ладью на поле h8. Выигрывает второй

  • Слайд 27

    2. Король стоит на поле а1. За один ход его можно передвинуть на одно поле вправо, или на одно поле вверх, или на одно поле по диагонали «вправо- вверх». Выигрывает тот, кто поставит короля на поле h8. Выигрывает первый

  • Слайд 28

    3. Имеются две кучки конфет: в одной- 20, а в другой- 21. За ход нужно съесть одну из кучек, а вторую разделить на две необязательно равные кучки. Проигрывает тот, кто не может сделать ход.

  • Слайд 29

    Анализ с конца - поиск выигрышных позиций

    Король стоит на поле а1. За один ход его можно передвинуть на одно поле вправо, или на одно поле вверх, или на одно поле по диагонали «вправо- вверх». Выигрывает тот, кто поставит короля на поле h8.

  • Слайд 30
  • Слайд 31
  • Слайд 32
  • Слайд 33
  • Слайд 34
  • Слайд 35
  • Слайд 36
  • Слайд 37

    Ферзь стоит на поле с1. За ход его можно передвинуть на любое число полей вправо, вверх, по диагонали « вправо- вверх». Выигрывает тот, кто поставит ферзя на поле h8.

  • Слайд 38
  • Слайд 39
  • Слайд 40
  • Слайд 41
  • Слайд 42
  • Слайд 43
  • Слайд 44

    Список литературы

    Генкин С.А.,ИнтенбергИ.В.,Фомин Д.В. «Математический кружок»,1994 АгахановН.Х.,Подлипский О.К. «Математика.Всероссийские олимпиады», 2010 Севрюков П.Ф. «Подготовка к решению оллимпиадных задач по математике»,2011 Интернет – ресурсы: http://ru.wikipedia.org/wiki/%D2%E5%EE%F0%E8%FF_%E8%E3%F0 http://www.openchess.ru/pravilaChess.php http;//www.liveinternet.ru

Посмотреть все слайды

Сообщить об ошибке