Содержание
-
ГЕОМЕТРИЯ ЛОБАЧЕВСКОГО
Выполнила: студентка 1 курса Ким В. Т. Руководитель: учитель математики Боровкова Ю.В. Новокузнецк, 2010 ГОУ НПО «Профессиональный лицей №70»
-
Проблема V постулата
Система аксиом современных школьных учебников геометрии базируется на системе аксиом Евклида. Евклидова геометрия на протяжении тысячелетий считалась единственной. Однако не все математики соглашались с системой аксиом и постулатов Евклида. Больше всего вопросов и споров вызывал V постулат.
-
Vпостулат Евклида
Если две прямые, пересечённые третьей, образуют по одну сторону от третьей прямой внутренние углы, сумма которых менее двух прямых углов, то при продолжении этих двух прямых они непременно пересекутся, причём именно с той стороны от третьей прямой, где сумма односторонних углов менее 180º.
-
Аксиома параллельности
В школьных учебниках Vпостулат Евклида заменяют равносильной ему аксиомой параллельности, более лёгкой для восприятия. Через точку, не лежащую на данной прямой проходит только одна прямая, лежащая с данной прямой в одной плоскости и не пересекающая её.
-
К концу XVIII века стала очевидна независимость V постулата от прочих постулатов Евклида. Многочисленные попытки доказать его успеха не имели. Русский учёный Николай Иванович Лобачевский в попытке доказать V постулат, заменил постулат его же отрицанием, что привело его к созданию новой, никому ранее неизвестной, геометрии*. * Формально Карл Фридрих Гаусс пришёл к тем же идеям раньше Лобачевского, но не опубликовал их, боясь потерять авторитет перед мировым учёным сообществом.
-
Аксиома Лобачевского
Через точку, не лежащую на данной прямой, проходят по крайней мере две прямые, лежащие с данной прямой в одной плоскости и не пересекающие её.
-
Лобачевский называет прямые С’и С"параллельными, причем С’II b- влево, а С"II b- вправо. Остальные прямые, проходящие через точку А и не пересекающие прямую b, (такие, как а’и а") называются расходящимися.
-
Далее обозначим длину отрезка АР На наших чертежах линии изогнуты, но вы должны понять, что Лобачевский рассуждал именно о прямых линиях. Если отрезок АР мал, то острый угол близок к 90º .Если посмотреть в “микроскоп”,то мы увидим, что прямые С’ и С" практически сливаются, поскольку угол очень близок к 90º. Лобачевский доказывает, что две параллельныепрямыенеограниченно сближаютсядруг с другом в сторону параллельности, но в обратном направлении онинеограниченно удаляютсядруг от друга.
-
Затем Лобачевский рассматривает две параллельныепрямые bи c, берет на прямой b движущуюся точку М, удаляющуюся в сторону, обратную параллельности. В каждом положении точки М он восставляет перпендикуляр к прямой b до c. Длина перпендикуляра непрерывно возрастает при движении точки М и, когда она попадает в положение Q, то становится бесконечной, точнее говоря, перпендикуляр Р в точке Q, параллелен прямойс.
-
Построив прямую с1, симметричную с, относительно перпендикуляра Р, получим три прямые: с, с1,b, которые попарно параллельныдруг другу, т.е. сIIb, с1IIb. Возникает своеобразный бесконечныйтреугольник. У него каждые две стороны параллельныдруг другу, а вершин совсем нет (они как бы находятся в бесконечности).
-
Связь геометрий Лобачевского и Евклида
В геометрии Лобачевского выполняется большинство теорем евклидовой геометрии (те, что не требуют использования аксиомы параллельности). В частности, верны все три признака равенства треугольников, но к ним добавляется четвёртый, которого нет в евклидовой геометрии: Если три угла одного треугольника соответственно равны трём углам второго треугольника, то эти треугольники равны*. * В геометрии Лобачевского сумма углов треугольника строго меньше 180º.
-
Практическое применение геометрии Лобачевского
Геометрия Лобачевского находит применение при изучении сверх-больших (космических) пространств. Недаром сам автор назвал ее «пангеометрией», т.е. всеобщей геометрией. Идеи Лобачевского широко используются современными физиками при построении общей геометрической картины «физического мира». Альберт Эйнштейн, например, применил их в своей теории относительности.
-
Судьба открытия
Лобачевский выступил с докладом об открытии НЕЕВКЛИДОВОЙ ГЕОМЕТРИИ в 1824 году, но поддержки не нашёл. Он опубликовал о ней ряд статей и книг, причем с её помощью сумел вычислить несколько интегралов, ранее неизвестных, но понимания не встретил. Математики следующего поколения (Клейн, Кэли, Пуанкаре и др.) сумели построить модель геометрии Лобачевского из материала геометрии Евклида, тем самым установив непротиворечивость и законность новой геометрии. Лишь после этого неевклидовы геометрии получили дальнейшее распространение.
-
Литература:
Геометрия Лобачевского [Электронный ресурс]. -Режим доступа: http://ru.wikipedia.org/wiki/Геометрия_Лобачевского Светила математики. Н.И.Лобачевский [Электронный ресурс]. -Режим доступа: http://mathsun.ru/lobachevskij.html Энциклопедия для детей. [Том 11.] Математика. – 2-е изд., перераб. / ред. коллегия: М. Аксёнова, В. Володин, М. Самсонов. – М.: Мир энциклопедий Аванта+, Астрель, 2007. – 621 [3] с.: ил.
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.