Содержание
-
Графический метод решения ЗЛП
Лекция 5
-
Рассмотрим ЗЛП на плоскости. при ограничениях
-
Каждое неравенство системы ограничений геометрически определяет полуплоскость с граничными прямыми Условия неотрицательности определяют полуплоскости с граничными прямыми Если система ограничений совместна, то область ее решения есть множество точек, принадлежащих всем указанным полуплоскостям. Совокупность этих точек называют многоугольником решений. Или областью допустимых решений (ОДР) ЗЛП.
-
Опр. Множество точек называется выпуклым, если вместе с любыми двумя точками оно содержит и весь отрезок. Тогда ОДР может быть вида: Выпуклый многоугольник; Выпуклая многоугольная неограниченная область; Пустая область; Отрезок; Единственная точка.
-
Целевая функция определяет на плоскости семейство прямых, одна из которых проходит через начало координат. Эта прямая называется основной. Прямая эта перпендикулярна нормальному вектору . Этот вектор указывает направление наискорейшего возрастания функции, а противоположный ему –направление наискорейшего убывания. Так чтоэто вектор вида
-
Прямая , перпендикулярная градиенту, является линией уровня целевой функции и поэтому во всех своих точках принимает одно и тоже значение. Приравнивая целевую функцию к постоянной , а затем меняя ее, получим семейство прямых, каждая из которых является линией уровня, которые обладают свойством: при смещении в одну сторону уровень только возрастает, а в другую- только убывает.
-
Геометрическая интерпретация ЗЛП:
Среди множества решений, которые находятся в многоугольнике решений, следует отыскать точку многоугольника, координаты которой обращают в максимум или минимум целевую функцию. Теорема. Если ЗЛП имеет оптимальный план, то целевая функция принимает свое оптимальное значение в одной из вершин многоугольника решений.
-
Для определения этой вершины строится основная прямая , которую перемещают в направлении градиента до тех пор, пока она не коснется последней крайней точки многоугольника решений. Это может быть вершина многоугольника, координаты которой и определяют максимальное значение целевой функции. Может быть и такой случай, когда последняя точка лежит на стороне многоугольника, и тогда целевая функция принимает максимальное значение на всей этой прямой. Если же в направлении градиента многоугольник решений неограничен, то .
-
Графический метод решения ЗЛП
Нахождение решения ЗЛП на основе ее геометрической интерпретации включает следующие этапы: 1).Строят прямые, уравнения которых получаются в результате замены в ограничениях задачи знаков неравенств на знаки равенств. 2).Находят полуплоскости, определяемые из ограничений задачи. 3).Находят многоугольник решений. 4). Строят вектор . 5). Строят прямую , проходящую через многоугольник решений. 6).Передвигают эту прямую в направлении градиента. 7)Определяют координаты точки максимума функции и вычисляют значение целевой функции в этой точке.
-
Пример. Задача о костюмах.
Намечается выпуск двух видов костюмов - мужских и женских.. На женский костюм требуется 1м шерсти, 2м полиэстера и 1человеко-день трудозатрат. На мужской –3,5м шерсти, 0,5м полиэстера и 1 человеко-день трудозатрат. Всего имеется 350м шерсти, 240 м полиэстера и150 человекодней трудозатрат.
-
Требуется определить, сколько костюмов каждого вида необходимо сшить, чтобы обеспечить максимальную прибыль, если прибыль от реализации женского костюма составляет 10 денежных единиц, а от мужского-20 денежных единиц. При этом следует иметь в виду, что необходимо сшить не менее 60 мужских костюмов.
-
Решение.
Обозначим: -число женских и число мужских костюмов соответственно. Целевая функция . Ограничения
-
Построим прямые Первая прямая пересекает оси координат в точках (350;0) и (0;100), вторая – в точках (120;0) и (0;0;480), третья – в точках (150;0) и (0;150).Четвертая прямая проходит параллельно оси .
-
Строим все прямые и получаем четырехугольник, все точки которого удовлетворяют всем четырем функциональным ограничениям. Легко проверить: например, т.(0;0) лежит ниже всех трех первых прямых, но не удовлетворяет последнему соотношению. Так что, все точки внутри многоугольника удовлетворяют всем четырем неравенствам. Теперь построим градиент целевой функции (10;20). Для этого соединим точку (10,20) с началом координат. Можно построить вектор, пропорциональный этому вектору, т.е. длиннее или короче в зависимости от масштаба
-
Затем перпендикулярно ему основную прямую и будем перемещать ее в направлении градиента до ее выхода из ОДР. Это произойдет в точке пересечения прямых
-
Решим систему двух уравнений и получим точку При этих значениях
-
0 120 480 150 120 120 150 60 350 maxF=2300 Линия уровня gradF=(10,20)
-
Пример
Найти максимум и минимум функции при ограничениях
-
Решение. Строим многоугольник решений. Для этого изобразим прямые Первая из них проходит через токчи (8;0) и (0;8), вторая – через точки (0,5;0) и (0;-1), третья –через точки (2;0) и (0;-1). Далее изобразим градиент (3;3) и линии уровня.
-
2 2 -1 0 88 8 8 B A C D Линии уровня
-
Передвигая линию уровня в направлении возрастания , т.е. в направлении градиента, получаем, что целевая функция достигает максимального значения вдоль прямой На прямой возьмем точку , например В, координаты которой можно найти из системы уравнений Целевая функция здесь имеет значение
-
При решении данной задачи на минимум целевой функции линию уровня следует двигать в направлении, обратном направлению градиента. Целевая функция достигает минимума в точке D пересечения прямой с осью , т.е. в точке ((0,5;0). Тогда
-
Пример.
Найти максимум функции при ограничениях
-
Эта задача не имеет решения, т.к. целевая функция не ограничена сверху на ОДР. Это означает, что
-
-1 0 4 4 2 2 Линии уровня градиент
-
Найти максимум функции при ограничениях
-
Строим прямые, заменив знаки неравенств на знаки равенства, а затем закрасим область допустимых решений. Очевидно, начало координат находится ниже прямой , не удовлетворяет второму неравенству , поэтому точки области лежат правее этой прямой. Последнему неравенству удовлетворяет и поэтому получаем область на рисунке
-
1 2 3 -1 0 1 2
-
Из рисунка видим, что множество планов пусто, т.к.закрашенные области не имеют общих точек.
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.