Содержание
-
Презентация по математике на тему:
«Метод математической индукции» Выполнила Кондратьева Анастасия 10 класс
-
В основе математического исследования лежит
Дедуктивный метод Индуктивный метод
-
Дедуктивный метод
Дедуктивный метод – это рассуждение, исходным моментом которого является общее утверждение, а заключительным – частный результат.
-
Индуктивный метод
Индуктивный метод – рассуждение, при котором, опираясь на ряд частных результатов приходят к одному общему выводу.
-
Пример рассуждения по индукции
Требуется установить, что каждое четное число в пределах от 4 до 100 можно представить в виде суммы двух простых чисел. Для этого переберем все интересующие нас числа и выпишем соответствующие суммы:
-
4=2+2; 6=3+3; 8=3+5; 10=5+5; ...; 92=3+89; 94=5+89; 96=7+89; 98=9+89; 100=3+97. Эти 49 равенств (мы выписали только 9 из них) показывают, что утверждение о том, что любое четное число от 4 до100 можно представить в виде суммы двух простых чисел, верно и было доказано путем перебора всех частных случаев.
-
Это был пример полной индукции, когда общее утверждение доказывается для конечного множества элементов при рассмотрении каждого из этих элементов. Но чаще общее утверждение относится не к конечному, а к бесконечному множеству. В таких случаях общее утверждение может быть угаданным, полученным неполной индукцией. Оно может оказаться верным или неверным.
-
Пример 1
Выдвинем гипотезу, что сумма первых n нечетных чисел равна n2. Рассмотрим на примерах:1=12; 1+3=4=22 ; …; 1+3+5+7+9+11=36=62 Гипотеза подтвердилась, однако она останется гипотезой, пока не будет доказана. Доказательство: 1+2+5+…+(2n-1) – сумма n членов арифметической прогрессии, значит, Sn=
-
Пример 2
Рассмотрим последовательность Выпишем первые четыре члена:19; y2 =23; y3 = 29; y4 = 37. Возникает гипотеза, что вся последовательность состоит из простых чисел. Однако это не так: У16 =162 +16 +17=16(16+1)+17= 17(16+1)= 17×17. Это составное число.
-
Итак, неполная индукция не считается в математике методом строгого доказательства, т.к. может привести к ошибке. Во многих случаях, когда доказательство найти трудно, обращаются к особому методу рассуждений, который называется методом математической индукции.
-
Метод математической индукции
Суть метода можно разъяснить на примере. Рассмотрим арифметическую прогрессию а1 , а2 , а3 , … аn , … . По определению значит, ;
-
Нетрудно догадаться, что для любого номера nсправедливо равенство Утверждение выведено нами интуитивно, попробуем обосновать его. Если n=1, то а1=а1 + (1-1)d – верное равенство, то есть утверждение для n=1 верно. Предположим, что утверждение верно для натурального числа n=k, т.е. предположим, что ak=а1+(k-1)d. И попробуем доказать, что утверждение верно для n=k+1, т.е. ak+1=а1+kd В самом деле по определению арифметической прогрессии ak+1=ak+d=(а1+(k-1)d)+d=а1+kd
-
Для n=1 утверждение верно. Мы оказали, что если для n=kэта формула верна, то и для n=k+1 формула тоже верна. Но т.к. формула верна для n=1, то она верна и для n=2, а значит и для n=3 и т.д. т.е формулаверна для любого натурального числа n. Утверждение доказано.
-
Составляющие метода математической индукции
Пусть нужно доказать справедливость А(n), где n – любое натуральное число. Для этого сначала проверим справедливость А(n) для n=1(базис математической индукции). Затем докажем, что для любого натурального числа k справедливо следующее: если А(k) – справедливо, то А(k+1), тоже справедливо(индукционный шаг). Делаем вывод, что А(n) справедливо для любого n.
-
Принцип математической индукции:
Утверждение, зависящее от натурального числа n, справедливо для любого n, если выполнены следующие условия: А)утверждение верно для n=1; Б)из справедливости утверждения для n=k, где k – любое натуральное число, вытекает справедливость утверждения и для следующего натурального числа n=k+1
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.