Презентация на тему "Построение теней в ортогональных и аксонометрических проекциях. Тени геометрических тел"

Презентация: Построение теней в ортогональных и аксонометрических проекциях. Тени геометрических тел
Включить эффекты
1 из 9
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
0.0
0 оценок

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Смотреть презентацию онлайн с анимацией на тему "Построение теней в ортогональных и аксонометрических проекциях. Тени геометрических тел" по математике. Презентация состоит из 9 слайдов. Материал добавлен в 2017 году.. Возможность скчачать презентацию powerpoint бесплатно и без регистрации. Размер файла 0.34 Мб.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    9
  • Слова
    геометрия
  • Конспект
    Отсутствует

Содержание

  • Презентация: Построение теней в ортогональных и аксонометрических проекциях. Тени геометрических тел
    Слайд 1

    Т Е Н И

    ПОСТРОЕНИЕ ТЕНЕЙ В ОРТОГОНАЛЬНЫХ И АКСОНОМЕТРИЧЕСКИХ ПРОЕКЦИЯХ. ТЕНИ ГЕОМЕТРИЧЕСКИХ ТЕЛ.

  • Слайд 2

    Тени геометрических тел При построении теней геометрических тел сначала следует определить контур собственной тени, а затем приступить к построению падающей тени, которая является тенью контура собственной тени. Тень призмы (рис. 1). Задняяи правая боковая грани призмы находятся в собственной тени. Ребра, разделяющие освещенные и затененные грани призмы, образуют контур собственной тени. Они представляют собой прямые частного положения, падающие тени от которых строятся просто. Ширина падающей тени на фасаде от столба прямоугольного поперечного сечения равна сумме сторон плана. Рис.1

  • Слайд 3

    Тени геометрических тел Рис.2 Тень цилиндра (рис. 2). Кон­тур собственной тени определяетсядвумя образующими 1и5, по которым лучевые плоскости касаются егобоковой поверхности. Фронтальная проекция контура собственной тени можетбыть определена без плана с помощью равнобедренного треугольника с засечкой на гипотенузе, построенного на половине фронтальной проекции основания. Это относится и к цилиндру, расположенному горизонтально.Построение падающей тени на плане и фасаде включает уже известные элементы — построение тени горизонтальной окружности и теней вертикальных прямых. Ширина падающей тени на фасаде составляет 1,41 D.

  • Слайд 4

    Тени геометрических тел Рис.3 Тень конуса (рис. 3). При по­строении тени конуса следует посту­пить иначе — сначала построить падающую тень, с помощью которой определяют затем контур собственной тени. Начинают с построения падающей тени вершины на плоскость основания конуса. Такой тенью является мнимая тень SH. Касательные, проведенные из этой точки к основанию конуса, определяюттеневые образующие конуса, которые иявляются контуром собственной тени.Точки касания графически точно определяются с помощью окружности, построенной на проекции падающей тени— SHвысоты конуса. Контур собственной тени конуса — линия касания боковой поверхности конуса лучевыми плоскостями, параллельными световым лучам, а контур падающей тени — горизонтальные следы лучевых плоскостей.

  • Слайд 5

    Тени геометрических тел Тень конуса, обращенного вершиной вниз,строится аналогичным образом рис. 4. Для определения теневых образующих конуса необходимо провести через вершину конуса световой луч в обратном направлении до пересечения с плоскостью основания конуса, а затем провести из этой точки касательные к его основанию. Сравнивая зону собственной тени первого и второго конусов, заметим, что собственная тень конуса, обращенного вершиной вверх, занимает менее половины боковой поверхности, а собственная тень конуса, обращенного вершиной вниз, — более половины поверхности. Рис.4

  • Слайд 6

    Тени геометрических тел Тень сферы (рис. 5). Световые лучи, касающиеся поверхности сферы, образуют обертывающую цилиндрическую лучевую поверхность. Она касается сферы по большой окружности — контуру собственной тени сферы. Проекциями контура собственной тени являются эллипсы. Большая ось эллипса равна диаметру сферы, а малая ось ≈ 0,6 D. Чтобы определить этот параметр, можно применить замену плоскости проекции Ни построить новую проекцию сферы и ее собственную тень на плоскости проекций, параллельной лучам света . В этом случае при истинном наклоне луча ≈ 35° новая проекция контура собственной тени будет перпендикулярна проекциям лучей (графическое построение угла в 35° показано на дополнительной проекции). Построение падающей тени сферы на фронтальную плоскость проекций понятно из чертежа. Рис.5 v

  • Слайд 7

    Тени геометрических тел Рис.6 Собственная тень сферы может быть построена на фасаде без второй проекции, по восьми точкам . Точки 3',4',5' и 6' определяются с помощью горизонтальных и вертикальных прямых, проведенных из точек Г и 2' до пересечения с горизонтальным и вертикальным диаметрами. Точки 7' и 8 ' находят построением равностороннего треугольника и проведением прямых под углом 30° из точки 2' к диаметру 1' — 2'. Падающая тень полусферы (рис. 6) представляет собой полу эллипс, большая полуось которого равна 1,7 радиуса. Она определяется засечкой из точки 1' отрезком, равным диаметру. Построение точек тени 3v и 4v понятно из чертежа.

  • Слайд 8

    Тени геометрических тел Рис. 7 Рис.7 Тени на ступенях лестницы (рис. 7). Тенеобразующими ребрами боковой стенки являются вертикальное, наклонное и горизонтальное ребра. Вертикальное ребро повторяет профиль лестницы до точки а0. Тень от горизонтального ребра совпадает с проекцией луча.

  • Слайд 9

    Тени геометрических тел Рис. 7 Рис.7 Построим тень от наклонного ребра АВ на вертикальной плоскости (подступенок) одной ступени. Проведем профильные проекции обратных лучей, затем построим на фасаде тени 10и 20. Так как наклонное ребро АВ параллельно наклону лестничного марша, проекции точек тени, аналогичные построенным, будут располагаться на остальных ступенях на вертикальных прямых.

Посмотреть все слайды

Сообщить об ошибке