Презентация на тему "Великие задачи математики. Квадратура круга"

Презентация: Великие задачи математики. Квадратура круга
1 из 33
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
0.0
0 оценок

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Интересует тема "Великие задачи математики. Квадратура круга"? Лучшая powerpoint презентация на эту тему представлена здесь! Данная презентация состоит из 33 слайдов. Также представлены другие презентации по математике. Скачивайте бесплатно.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    33
  • Слова
    математика
  • Конспект
    Отсутствует

Содержание

  • Презентация: Великие задачи математики. Квадратура круга
    Слайд 1

    ВЕЛИКИЕЗАДАЧИМАТЕМАТИКИ

    Квадратуракруга

  • Слайд 2

    Автор: Монахов Станислав МОУ "Средняя общеобразовательная школа № 59" Курск - 2006

  • Слайд 3

    Меня зовут Монахов Станислав. Я ученик 6-го класса, очень люблю заниматься математикой, историей, информатикой, а также много читать и считаю, что как бы ни относились люди к математике, без нее - как без рук. Она - повсюду. Нужно только уметь ее увидеть. Огромную помощь в этом оказывают научно-популярная и справочная литература, Интернет, позволяющие взглянуть на поставленную задачу с новой, нестандартной точки зрения.

  • Слайд 4

    Впервые я услышал о трех знаменитых задачах на факультативном занятии по математике «Наглядная геометрия» от учителя. Из них меня особенно заинтересовала квадратура круга. Во-первых, очень удивило сочетание слов «квадратура», «круг». Во-вторых, чем знаменита эта задача. В- третьих, почему её решением так долго занимались великие ученые. В-четвертых, целесообразность решения данной задачи и её практическая значимость. Эти вопросы меня очень заинтриговали и я решил проследить историю возникновения и решения данной задачи. Введение

  • Слайд 5

    Показать, что в математике, как и во всякой другой науке, достаточно своих неразгаданных тайн. Подчеркнуть, что математиков отличает нестандартное мышление. А иногда смекалка и интуиция хорошего математика просто приводят в восхищение! Показать, что сама попытка решения задачи о квадратуре круга содействовала развитию новых понятий и идей в математике. Учиться работать с различными источниками информации, анализировать и сопоставлять точки зрения ученых разных времен по данной теме. Продолжить исследовательскую работу по теме « Знаменитые задачи математики» Цели и задачи проекта

  • Слайд 6

    Возьму линейку, проведу прямую, И мигом круг квадратом обернётся, Посередине рынок мы устроим, А от него уж улицы пойдут – Ну, как на Солнце! Хоть оно само И круглое, а ведь лучи прямые!.. /Аристофан/

  • Слайд 7

    С глубокой древности известны три задачи на построение: об удвоении куба, трисекции угла и квадратуре круга. Они сыграли особую роль в истории математики. В конце концов было доказано, что решить их невозможно, пользуясь только циркулем и линейкой. Но уже сама постановка проблемы «доказать неразрешимость» была смелым шагом вперёд.

  • Слайд 8

    Вероятно, задача была известна уже за две тысячи лет до н. э. в Древнем Египте и Вавилоне. В то время у египетских математиков находятся первые решения задачи, как построить квадрат, равновеликий данному кругу, или определить соотношение между окружностью и её диаметром.

  • Слайд 9

    В папирусе Ринда, написанным Ахмесом, говорится, что сторона квадрата, равновеликого площади круга, равна восьми девятым диаметра (так что П = 3,16). У древних вавилонян и евреев принималось, что длина окружности ровно втрое больше диаметра и, следовательно, П =3.

  • Слайд 10

    Древнегреческие математики также достигли чрезвычайно большого искусства в геометрических построениях. Они еще издавна преобразовывали любую прямолинейную фигуру с помощью циркуля и линейки в произвольную прямолинейную, равновеликую ей.

  • Слайд 11

    Так появилась мысль обобщить эту задачу: построить с помощью циркуля и линейки такой квадрат, площадь которого была бы равна площади данного круга. Задача получила название квадратуры круга, и многие ученые пытались выполнить такое построение. Однако решение не поддавалось их усилиям.

  • Слайд 12

    Но первая прямая ссылка на неё относится к V в. до н. э. По свидетельству древнегреческого историка Плутарха, философ Антифонт, коротая время в тюрьме, пытался квадрировать круг, т. е. превратить его в равновеликий квадрат.

  • Слайд 13

    Полного решения, предложенного Антифонтом, не сохранилось, но считается что оно состояло в следующем: производя последовательно удвоение сторон вписанного многоугольника, он получал  в конце-концов многоугольник с очень большим числом сторон, которые, по мысли Антифонта, должны совпадать с соответствующими им дугами окружности.

  • Слайд 14
  • Слайд 15

    Но, так как для любого многоугольника можно с помощью циркуля и линейки построить равновеликий квадрат, то такой квадрат можно построить и для данного круга. От Плутарха известно, что лучшие математики того времени (в том числе Платон, Евдокс) посещали в темнице Антифонта и были удовлетворены его решением, а ведь требования к строгости доказательств в то время были не ниже сегодняшних.

  • Слайд 16

    Архимед (287-212 до н.э.), вычисляя периметры вписанных и описанных 96-ти угольников, в сочинении «Измерение круга» показал, что периметр вписанного многоугольника с любым числом сторон всегда меньше, а описанного - всегда больше длины данной окружности, и что величина П заключается между пределами 3,1408

  • Слайд 17

    Известный математик древности Гиппократ Хиосский (ок. 400 г. до н.э.) первый указал на то, что площадь круга пропорциональна квадрату его диаметра. Но провести строгое доказательство учёный в то время еще не мог: не было подходящего метода.

  • Слайд 18

    Попытки Гиппократа решить задачу о квадратуре круга привели его к открытию квадрируемых фигур (то есть таких, площади которых выражаются в рациональных числах), ограниченных пересекающимися окружностями.

  • Слайд 19

    Найденное Гиппократом Хиосским соотношение позволило свести задачу о квадратуре круга к построению с помощью циркуля и линейки, если это возможно, полученного коэффициента пропорциональности, одного и того же для всех кругов.

  • Слайд 20

    Они впоследствии получили название гиппократовых луночек. Казалось бы, что с появлением таких луночек найден ключ к решению задачи о квадратуре круга. Она была бы решена, если бы удалось разбить круг на квадрируемые части.

  • Слайд 21

    Были найдены и другие пути определения квадратуры круга: кроме циркуля и линейки использовали различные инструменты или специально построенные кривые. Так, в V в. до н.э. греческий математик Гиппий из Элиды изобрел кривую, впоследствии получившую название квадратрисы Динострата (ее назвали по имени другого древнегреческого математика, жившего несколько позже и указавшего способ построения квадратуры круга при помощи этой кривой).

  • Слайд 22

    Все предложенные решения в лучшем случае давали приближённое значение с достаточно хорошей точностью. Однако все-таки оставались принципиально приближёнными. Впрочем, авторы таких построений часто не сомневались в их абсолютной точности и горячо отстаивали свои заблуждения.

  • Слайд 23

    Один из самых громких споров на эту тему произошёл в Англии между двумя выдающимися учёными XVII в., философом Томасом Гоббсом и математиком Джоном Валлисом. В весьма почтенном возрасте Гоббс опубликовал около десяти «решений» задачи о квадратуре круга.

  • Слайд 24

    Однако ученых Древней Греции и их последователей такие решения, находящиеся за пределами применения циркуля и линейки, не удовлетворяли. Будучи вначале чисто геометрической задачей, квадратура круга превратилась в течение веков в исключительно важную задачу арифметико-алгебраического характера, связанную с числом П , и содействовала развитию новых понятий и идей в математике.

  • Слайд 25

    Отношение длины окружности к ее диаметру есть величина постоянная, не зависящая от радиуса круга, она обозначается буквой П. Теперь известно, П - число иррациональное, оно выражается бесконечной непериодической десятичной дробью 3,1415926…, которое было вычислено с 707 десятичными знаками математиком В. Шенксом.

  • Слайд 26

    S=r 2 S=a  a=?

  • Слайд 27

    Этот результат вместе с формулой вычислений он обнародовал в 1837 году. Ни одна ещё задача подобного рода не решалась с таким огромным приближением и с точностью, далеко превышающее отношение микроскопических расстояний к телескопическим.

  • Слайд 28

    Работа, сделанная Шенксом, в сущности бесполезна – или почти бесполезна. Но, с другой стороны, она может служить довольно убедительным доказательством противного тому, кто до сих пор ещё надеется, что можно найти точное отношение длины окружности к диаметру.

  • Слайд 29

    Можно вычислить приближенное значение П. Однако не в практическом отношении интересовала людей задача о квадратуре круга, а интересовала её принципиальная сторона: возможно ли точно решить эту задачу,выполняя построения с помощью только циркуля и линейки.

  • Слайд 30

    Поэтому квадратура круга была в прежние времена самой заманчивой и соблазнительной задачей. Армия «квадратурщиков» неустанно пополнялась каждым новым поколением математиков. Все усилия были тщетны, но число их не уменьшалось. В некоторых умах доказательство, что решение не может быть найдено, зажигало ещё большее рвение к изысканиям.

  • Слайд 31

    Лишь в 80-х годах 19в. было строго доказано, что решить задачу о квадратуре круга с помощью циркуля и линейки невозможно. Эта задача становится разрешимой, если применять, кроме циркуля и линейки, еще другие средства построения.

  • Слайд 32

    Термин «квадратура круга» стал синонимом неразрешимых задач. Вместе с тем предлагалось множество решений при помощи нетрадиционных инструментов. Всё это привело к возникновению и развитию совершенно новых идей в геометрии и алгебре. Анализируя материал по данной теме, я пришел к выводу, что неразрешимость некоторых задач служит отправной точкой новых математических исследований, интригует, стимулирует и способствует развитию творчества. В дальнейшем я собираюсь изучить историю решения других знаменитых задач древности о трисекции угла, удвоении куба. В процессе работы я: систематизировал полученную информацию об истории решения неразрешимых задач, раньше своих одноклассников познакомился с числом П, и сзадачами на построения с помощью циркуля и линейки, приобрёл навыки : исследовательской работы, самостоятельного поиска и нахожденияключевых понятий, научился производить группировку материала и его анализ. Заключение

  • Слайд 33

    Литература

Посмотреть все слайды

Сообщить об ошибке