Презентация на тему "Цитология" 10 класс

Презентация: Цитология
1 из 33
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
4.1
3 оценки

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Презентационная работа по биологии на тему: "Цитология ", созданная учеником старших классов. Автор рассказывает нам об истории возникновения этой науки, знакомит с основными положениями клеточной теории и функциями белков.

Краткое содержание

  • Возникновение и развитие цитологии
  • Основные положения клеточной теории
  • Биологические функции белков
  • Каталитическая функция
  • Структурная функция
  • Защитная функция
  • Регуляторная функция

Содержание

  • Презентация: Цитология
    Слайд 1

    Цитология

    Ученика 10 Б класса Ильина Романа

  • Слайд 2

    Цитоло́гия

    Цитоло́гия (греч. κύτος — пузырьковидное образование и λόγος — слово, наука) — раздел биологии, изучающий живые клетки, их органоиды, их строение, функционирование, процессы клеточного размножения, старения и смерти.

  • Слайд 3

    Содержание

  • Слайд 4

    Возникновение и развитие цитологии

    Термин клетка впервые употребил Роберт Гук в 1665 году при описании своих «исследований строения пробки с помощью увеличительных линз». В 1674 году Антониван Левенгук установил, что вещество, находящееся внутри клетки, определенным образом организовано. Он первым обнаружил клеточные ядра. На этом уровне представление о клетке просуществовало еще более 100 лет.

    Изучение клетки ускорилось в 1830-х годах, когда появились усовершенствованные микроскопы. В 1838—1839 ботаник МаттиасШлейден и анатом Теодор Шванн практически одновременно выдвинули идею клеточного строения организма. Т. Шванн предложил термин «клеточная теория» и представил эту теорию научному сообществу. Возникновение цитологии тесно связано с созданием клеточной теории — самого широкого и фундаментального из всех биологических обобщений. Согласно клеточной теории, все растения и животные состоят из сходных единиц — клеток, каждая из которых обладает всеми свойствами живого.

    Важнейшим дополнение клеточной теории явилось утверждение знаменитого немецкого натуралиста Рудольфа Вирхова, что каждая клетка образуется в результате деления другой клетки.

    В 1870-х годах были открыты два спосооба деления клетки эукариот, впоследствии названные митоз и мейоз. Уже через 10 лет после этого удалось установить главные для генетики особенности этих типов деления. Было установлено, что перед митозом происходит удвоение хромосом и их равномерное распределение между дочерними клетками, так что в дочерних клетках сохраняется прежнее число хромосом. Перед мейозом хромосом также удваивается. но в первом (редукционном) делении к полюсам клетки расходятся двухроматидные хромосомы, так что формируются клетки с гаплоидным набором, число хромосом в них в два раза меньше, чем в материнской клетке. Было установлено, что число, форма и размеры хромосом - кариотип - одинаково во всех соматических клетках животных данного вида, а число хромосом в гаметах в два раза меньше. Впоследствии эти цитолоогические открытия легли в основу хромосомной теории наследственности.

  • Слайд 5

    Термин клетка впервые употребил Роберт Гук в 1665 году при описании своих «исследований строения пробки с помощью увеличительных линз». В 1674 году Антониван Левенгук установил, что вещество, находящееся внутри клетки, определенным образом организовано. Он первым обнаружил клеточные ядра. На этом уровне представление о клетке просуществовало еще более 100 лет.

    Изучение клетки ускорилось в 1830-х годах, когда появились усовершенствованные микроскопы. В 1838—1839 ботаник МаттиасШлейден и анатом Теодор Шванн практически одновременно выдвинули идею клеточного строения организма. Т. Шванн предложил термин «клеточная теория» и представил эту теорию научному сообществу. Возникновение цитологии тесно связано с созданием клеточной теории — самого широкого и фундаментального из всех биологических обобщений. Согласно клеточной теории, все растения и животные состоят из сходных единиц — клеток, каждая из которых обладает всеми свойствами живого.

    Важнейшим дополнение клеточной теории явилось утверждение знаменитого немецкого натуралиста Рудольфа Вирхова, что каждая клетка образуется в результате деления другой клетки.

    В 1870-х годах были открыты два спосооба деления клетки эукариот, впоследствии названные митоз и мейоз. Уже через 10 лет после этого удалось установить главные для генетики особенности этих типов деления. Было установлено, что перед митозом происходит удвоение хромосом и их равномерное распределение между дочерними клетками, так что в дочерних клетках сохраняется прежнее число хромосом. Перед мейозом хромосом также удваивается. но в первом (редукционном) делении к полюсам клетки расходятся двухроматидные хромосомы, так что формируются клетки с гаплоидным набором, число хромосом в них в два раза меньше, чем в материнской клетке. Было установлено, что число, форма и размеры хромосом - кариотип - одинаково во всех соматических клетках животных данного вида, а число хромосом в гаметах в два раза меньше. Впоследствии эти цитолоогические открытия легли в основу хромосомной теории наследственности.

  • Слайд 6

    Основные положения клеточной теории

    • Клетка — элементарная единица живого, основная единица строения, функционирования, размножения и развития всех живых организмов.
    • Клетки всех одноклеточных и многоклеточных организмов имеют общее происхождение и сходны по своему строению и химическому составу, основным проявлениям жизнедеятельности и обмену веществ.
    • Размножение клеток происходит путём их деления. Новые клетки всегда возникают из предшествующих клеток.
  • Слайд 7

    Клетка — элементарная единица живого, основная единица строения, функционирования, размножения и развития всех живых организмов.

    Клетки всех одноклеточных и многоклеточных организмов имеют общее происхождение и сходны по своему строению и химическому составу, основным проявлениям жизнедеятельности и обмену веществ.

    Размножение клеток происходит путём их деления. Новые клетки всегда возникают из предшествующих клеток.

  • Слайд 8
    • Клетка — элементарная единица живого, основная единица строения, функционирования, размножения и развития всех живых организмов.
    • Клетки всех одноклеточных и многоклеточных организмов имеют общее происхождение и сходны по своему строению и химическому составу, основным проявлениям жизнедеятельности и обмену веществ.
    • Размножение клеток происходит путём их деления. Новые клетки всегда возникают из предшествующих клеток.
  • Слайд 9

    Биологические функции белков

    • Энергетическая (резервная) функция

    Многие жиры, в первую очередь триглицериды, используются организмом как источник энергии. При полном окислении 1 г жира выделяется около 9 ккал энергии, примерно вдвое больше, чем при окислении 1 г белков или углеводов. Поэтому жировые отложения используются в качестве запасных источников питательных веществ прежде всего животными, которые вынуждены таскать свои запасы на себе. Растения чаще запасают углеводы. однако в семенах многих растений высоко содержание жиров (растительные масла добывают из семян подсолнечника. кукурузы, рапса, льна и других масличных растений).

    • Функция теплоизоляции

    Жир - хороший теплоизолятор, поэтому у многих теплокровных животных он откладывается в подкожной жировой ткани, уменьшая потери тепла. Особенно толстый подкожный жировой слой характерен для водных млекопитающих (китов, моржей и др.). В то же время у животных, обитающих в условиях жаркого климата (верблюды, тушканчики) жировые запасы откладываются на изолированных участках тела (в горбах у верблюда, в хвосте у жирнохвостых тушканчиков), чтобы он не препятствовал теплоотдаче.

    • Регуляторная

    Витамины — липиды (A, D, E, K)

    Гормональная (стероиды, эйкозаноиды, простагландины и др.)

    Кофакторы (долихол)

    Сигнальные молекулы (диглицериды, жасмоновая кислота; IP3-каскад)

    Защитная (амортизационная)

  • Слайд 10

    Функции белков в организме

    Так же как и другие биологические макромолекулы и нуклеиновые кислоты, белки — необходимые компоненты всех живых организмов, и участвуют в каждом внутреннем процессе клетки. Белки осуществляют обмен веществ и энергетические превращения. Белки входят в состав клеточных структур — органелл или секретируются во внеклеточное пространство для обмена сигналами между клетками и гидролиза пищевых субстратов. Следует отметить, что классификация белков по их функции достаточно условна, потому что у эукариот один и тот же белок может выполнять несколько функций. Хорошо изученным примером такой многофункциональности служит лизил-тРНК-синтетаза — фермент из класса аминоацил-тРНКсинтетаз, который не только присоединяет лизин к тРНК, но и регулирует транскрипцию нескольких генов.

  • Слайд 11

    Каталитическая функция

    Наиболее хорошо известная роль белков в организме — катализ различных химических реакций. Ферменты — группа белков, обладающая специфическими каталитическими свойствами, то есть каждый фермент катализирует одну или несколько сходных реакций. Ферменты катализируют реакции расщепления сложных молекул (катаболизм) и их синтеза (анаболизм), а также репликации и репарации ДНК и синтезе РНК. Известно несколько тысяч ферментов; среди них такие, как например пепсин, расщепляют белки в процессе пищеварения. В процесс пострансляционной модификации некоторые ферменты добавляют или удаляют химические группы на других белках. Известно около 4000 реакций, катализируемых белками. Ускорение реакции в результате ферментативного катализа иногда огромно: например, реакция, катализируемая ферментом оротат-карбоксилазой протекает в 1017 быстрее некатализируемой (78 миллионов лет без фермента, 18 миллисекунд с участием фермента). Молекулы, которые присоединяются к ферменту и изменяются в результате реакции, называются субстратами.

    Хотя ферменты обычно состоят из сотен аминокислот, только небольшая часть из них взаимодействует с субстратом, и еще меньшее количество — в среднем 3-4 аминокислоты, часто расположенные далеко друг от друга в первичной аминокислотной последовательности — напрямую участвуют в катализе. Часть фермента, которая присоединяет субстрат и содержит каталитические аминокислоты, называется активным центром фермента.

  • Слайд 12

    Структурная функция

    Структурные белки, как своего рода арматура, придают форму жидкому внутреннему содержимому клетки. Большинство структурных белков являются филаментозными белками: например, мономеры актина и тубулина — это глобулярные, растворимые белки, но после полимеризации они формируют длинные нити, из которых состоит цитоскелет, позволяющий клетке поддерживать форму. Коллаген и эластин — основные компоненты соединительной ткани (например, хряща), а из другого структурного белка кератина состоят волосы, ногти, перья птиц и некоторые раковины.

  • Слайд 13

    Защитная функция

    Существуют несколько видов защитных функций белков:

    1. Физическая защита. В ней принимает участие коллаген, белок, поддерживающего структуру кожи. Состоит из хондроитина и глюкозамина.

    2. Химическая защита. Связывание химических токсинов белковыми молекулами — дезинтоксикация.

    3. Иммунная защита. Защита с помощью иммуноглобулинов

    Белки, входящие в состав крови, участвуют в защитном ответе организма как на повреждение, так и на атаку патогенов. Примерами первой группы белков служат фибриногены и тромбины[28], участвующие в свёртывании крови, а антитела (иммуноглобулины), нейтрализуют бактерии, вирусы или чужеродные белки. Антитела, входящие в состав адаптативной иммунной системы, присоединяются к чужеродным для данного организма веществам, антигенам, и тем самым нейтрализуют их, направляя к местам уничтожения. Антитела могут секретироваться в межклеточное пространство или закрепляться в мембранах специализированных В-лимфоцитов, которые называются плазмоцитами[29]. В то время как ферменты имеют ограниченное сродство к субстрату, поскольку слишком сильное присоединение к субстрату может мешать протеканию катализируемой реакции, стойкость присоединения антител к антигену ничем не ограничено.

  • Слайд 14

    Регуляторная функция

    Многие процессы в организме регулируются небольшими белковыми молекулами, полипептидными гормонами и цитокинами. Примером таких белков служит, соответственно, инсулин, который регулирует концентрацию глюкозы в крови, и фактор некроза опухолей, который передаёт сигналы воспаления между клетками организма. На внутриклеточном уровне транскрипция генов определяется присоединением факторов транскрипции — белков-активаторов и белков-репрессоров к регуляторным последовательностям генов. На уровне трансляции считывание многих мРНК также регулируется присоединением белковых факторов, а деградация РНК и белков также проводится специализированными белковыми комплексами. Важнейшую роль в регуляции внутриклеточных процессов играют протеинкиназы — ферменты, которые активируют или подавляют активность других белков путем присоединения к ним фосфатных групп.

  • Слайд 15

    Многие процессы в организме регулируются небольшими белковыми молекулами, полипептидными гормонами и цитокинами. Примером таких белков служит, соответственно, инсулин, который регулирует концентрацию глюкозы в крови, и фактор некроза опухолей, который передаёт сигналы воспаления между клетками организма. На внутриклеточном уровне транскрипция генов определяется присоединением факторов транскрипции — белков-активаторов и белков-репрессоров к регуляторным последовательностям генов. На уровне трансляции считывание многих мРНК также регулируется присоединением белковых факторов, а деградация РНК и белков также проводится специализированными белковыми комплексами. Важнейшую роль в регуляции внутриклеточных процессов играют протеинкиназы — ферменты, которые активируют или подавляют активность других белков путем присоединения к ним фосфатных групп.

  • Слайд 16

    Многие процессы в организме регулируются небольшими белковыми молекулами, полипептидными гормонами и цитокинами. Примером таких белков служит, соответственно, инсулин, который регулирует концентрацию глюкозы в крови, и фактор некроза опухолей, который передаёт сигналы воспаления между клетками организма. На внутриклеточном уровне транскрипция генов определяется присоединением факторов транскрипции — белков-активаторов и белков-репрессоров к регуляторным последовательностям генов. На уровне трансляции считывание многих мРНК также регулируется присоединением белковых факторов, а деградация РНК и белков также проводится специализированными белковыми комплексами. Важнейшую роль в регуляции внутриклеточных процессов играют протеинкиназы — ферменты, которые активируют или подавляют активность других белков путем присоединения к ним фосфатных групп.

  • Слайд 17

    Многие процессы в организме регулируются небольшими белковыми молекулами, полипептидными гормонами и цитокинами. Примером таких белков служит, соответственно, инсулин, который регулирует концентрацию глюкозы в крови, и фактор некроза опухолей, который передаёт сигналы воспаления между клетками организма. На внутриклеточном уровне транскрипция генов определяется присоединением факторов транскрипции — белков-активаторов и белков-репрессоров к регуляторным последовательностям генов. На уровне трансляции считывание многих мРНК также регулируется присоединением белковых факторов, а деградация РНК и белков также проводится специализированными белковыми комплексами. Важнейшую роль в регуляции внутриклеточных процессов играют протеинкиназы — ферменты, которые активируют или подавляют активность других белков путем присоединения к ним фосфатных групп.

  • Слайд 18

    Многие процессы в организме регулируются небольшими белковыми молекулами, полипептидными гормонами и цитокинами. Примером таких белков служит, соответственно, инсулин, который регулирует концентрацию глюкозы в крови, и фактор некроза опухолей, который передаёт сигналы воспаления между клетками организма. На внутриклеточном уровне транскрипция генов определяется присоединением факторов транскрипции — белков-активаторов и белков-репрессоров к регуляторным последовательностям генов. На уровне трансляции считывание многих мРНК также регулируется присоединением белковых факторов, а деградация РНК и белков также проводится специализированными белковыми комплексами. Важнейшую роль в регуляции внутриклеточных процессов играют протеинкиназы — ферменты, которые активируют или подавляют активность других белков путем присоединения к ним фосфатных групп.

  • Слайд 19

    Многие процессы в организме регулируются небольшими белковыми молекулами, полипептидными гормонами и цитокинами. Примером таких белков служит, соответственно, инсулин, который регулирует концентрацию глюкозы в крови, и фактор некроза опухолей, который передаёт сигналы воспаления между клетками организма. На внутриклеточном уровне транскрипция генов определяется присоединением факторов транскрипции — белков-активаторов и белков-репрессоров к регуляторным последовательностям генов. На уровне трансляции считывание многих мРНК также регулируется присоединением белковых факторов, а деградация РНК и белков также проводится специализированными белковыми комплексами. Важнейшую роль в регуляции внутриклеточных процессов играют протеинкиназы — ферменты, которые активируют или подавляют активность других белков путем присоединения к ним фосфатных групп.

  • Слайд 20

    Многие процессы в организме регулируются небольшими белковыми молекулами, полипептидными гормонами и цитокинами. Примером таких белков служит, соответственно, инсулин, который регулирует концентрацию глюкозы в крови, и фактор некроза опухолей, который передаёт сигналы воспаления между клетками организма. На внутриклеточном уровне транскрипция генов определяется присоединением факторов транскрипции — белков-активаторов и белков-репрессоров к регуляторным последовательностям генов. На уровне трансляции считывание многих мРНК также регулируется присоединением белковых факторов, а деградация РНК и белков также проводится специализированными белковыми комплексами. Важнейшую роль в регуляции внутриклеточных процессов играют протеинкиназы — ферменты, которые активируют или подавляют активность других белков путем присоединения к ним фосфатных групп.

  • Слайд 21

    Многие процессы в организме регулируются небольшими белковыми молекулами, полипептидными гормонами и цитокинами. Примером таких белков служит, соответственно, инсулин, который регулирует концентрацию глюкозы в крови, и фактор некроза опухолей, который передаёт сигналы воспаления между клетками организма. На внутриклеточном уровне транскрипция генов определяется присоединением факторов транскрипции — белков-активаторов и белков-репрессоров к регуляторным последовательностям генов. На уровне трансляции считывание многих мРНК также регулируется присоединением белковых факторов, а деградация РНК и белков также проводится специализированными белковыми комплексами. Важнейшую роль в регуляции внутриклеточных процессов играют протеинкиназы — ферменты, которые активируют или подавляют активность других белков путем присоединения к ним фосфатных групп.

  • Слайд 22

    Многие процессы в организме регулируются небольшими белковыми молекулами, полипептидными гормонами и цитокинами. Примером таких белков служит, соответственно, инсулин, который регулирует концентрацию глюкозы в крови, и фактор некроза опухолей, который передаёт сигналы воспаления между клетками организма. На внутриклеточном уровне транскрипция генов определяется присоединением факторов транскрипции — белков-активаторов и белков-репрессоров к регуляторным последовательностям генов. На уровне трансляции считывание многих мРНК также регулируется присоединением белковых факторов, а деградация РНК и белков также проводится специализированными белковыми комплексами. Важнейшую роль в регуляции внутриклеточных процессов играют протеинкиназы — ферменты, которые активируют или подавляют активность других белков путем присоединения к ним фосфатных групп.

  • Слайд 23

    Многие процессы в организме регулируются небольшими белковыми молекулами, полипептидными гормонами и цитокинами. Примером таких белков служит, соответственно, инсулин, который регулирует концентрацию глюкозы в крови, и фактор некроза опухолей, который передаёт сигналы воспаления между клетками организма. На внутриклеточном уровне транскрипция генов определяется присоединением факторов транскрипции — белков-активаторов и белков-репрессоров к регуляторным последовательностям генов. На уровне трансляции считывание многих мРНК также регулируется присоединением белковых факторов, а деградация РНК и белков также проводится специализированными белковыми комплексами. Важнейшую роль в регуляции внутриклеточных процессов играют протеинкиназы — ферменты, которые активируют или подавляют активность других белков путем присоединения к ним фосфатных групп.

  • Слайд 24

    Многие процессы в организме регулируются небольшими белковыми молекулами, полипептидными гормонами и цитокинами. Примером таких белков служит, соответственно, инсулин, который регулирует концентрацию глюкозы в крови, и фактор некроза опухолей, который передаёт сигналы воспаления между клетками организма. На внутриклеточном уровне транскрипция генов определяется присоединением факторов транскрипции — белков-активаторов и белков-репрессоров к регуляторным последовательностям генов. На уровне трансляции считывание многих мРНК также регулируется присоединением белковых факторов, а деградация РНК и белков также проводится специализированными белковыми комплексами. Важнейшую роль в регуляции внутриклеточных процессов играют протеинкиназы — ферменты, которые активируют или подавляют активность других белков путем присоединения к ним фосфатных групп.

  • Слайд 25

    Многие процессы в организме регулируются небольшими белковыми молекулами, полипептидными гормонами и цитокинами. Примером таких белков служит, соответственно, инсулин, который регулирует концентрацию глюкозы в крови, и фактор некроза опухолей, который передаёт сигналы воспаления между клетками организма. На внутриклеточном уровне транскрипция генов определяется присоединением факторов транскрипции — белков-активаторов и белков-репрессоров к регуляторным последовательностям генов. На уровне трансляции считывание многих мРНК также регулируется присоединением белковых факторов, а деградация РНК и белков также проводится специализированными белковыми комплексами. Важнейшую роль в регуляции внутриклеточных процессов играют протеинкиназы — ферменты, которые активируют или подавляют активность других белков путем присоединения к ним фосфатных групп.

  • Слайд 26

    Многие процессы в организме регулируются небольшими белковыми молекулами, полипептидными гормонами и цитокинами. Примером таких белков служит, соответственно, инсулин, который регулирует концентрацию глюкозы в крови, и фактор некроза опухолей, который передаёт сигналы воспаления между клетками организма. На внутриклеточном уровне транскрипция генов определяется присоединением факторов транскрипции — белков-активаторов и белков-репрессоров к регуляторным последовательностям генов. На уровне трансляции считывание многих мРНК также регулируется присоединением белковых факторов, а деградация РНК и белков также проводится специализированными белковыми комплексами. Важнейшую роль в регуляции внутриклеточных процессов играют протеинкиназы — ферменты, которые активируют или подавляют активность других белков путем присоединения к ним фосфатных групп.

  • Слайд 27

    Многие процессы в организме регулируются небольшими белковыми молекулами, полипептидными гормонами и цитокинами. Примером таких белков служит, соответственно, инсулин, который регулирует концентрацию глюкозы в крови, и фактор некроза опухолей, который передаёт сигналы воспаления между клетками организма. На внутриклеточном уровне транскрипция генов определяется присоединением факторов транскрипции — белков-активаторов и белков-репрессоров к регуляторным последовательностям генов. На уровне трансляции считывание многих мРНК также регулируется присоединением белковых факторов, а деградация РНК и белков также проводится специализированными белковыми комплексами. Важнейшую роль в регуляции внутриклеточных процессов играют протеинкиназы — ферменты, которые активируют или подавляют активность других белков путем присоединения к ним фосфатных групп.

  • Слайд 28

    Многие процессы в организме регулируются небольшими белковыми молекулами, полипептидными гормонами и цитокинами. Примером таких белков служит, соответственно, инсулин, который регулирует концентрацию глюкозы в крови, и фактор некроза опухолей, который передаёт сигналы воспаления между клетками организма. На внутриклеточном уровне транскрипция генов определяется присоединением факторов транскрипции — белков-активаторов и белков-репрессоров к регуляторным последовательностям генов. На уровне трансляции считывание многих мРНК также регулируется присоединением белковых факторов, а деградация РНК и белков также проводится специализированными белковыми комплексами. Важнейшую роль в регуляции внутриклеточных процессов играют протеинкиназы — ферменты, которые активируют или подавляют активность других белков путем присоединения к ним фосфатных групп.

  • Слайд 29

    Многие процессы в организме регулируются небольшими белковыми молекулами, полипептидными гормонами и цитокинами. Примером таких белков служит, соответственно, инсулин, который регулирует концентрацию глюкозы в крови, и фактор некроза опухолей, который передаёт сигналы воспаления между клетками организма. На внутриклеточном уровне транскрипция генов определяется присоединением факторов транскрипции — белков-активаторов и белков-репрессоров к регуляторным последовательностям генов. На уровне трансляции считывание многих мРНК также регулируется присоединением белковых факторов, а деградация РНК и белков также проводится специализированными белковыми комплексами. Важнейшую роль в регуляции внутриклеточных процессов играют протеинкиназы — ферменты, которые активируют или подавляют активность других белков путем присоединения к ним фосфатных групп.

  • Слайд 30

    Многие процессы в организме регулируются небольшими белковыми молекулами, полипептидными гормонами и цитокинами. Примером таких белков служит, соответственно, инсулин, который регулирует концентрацию глюкозы в крови, и фактор некроза опухолей, который передаёт сигналы воспаления между клетками организма. На внутриклеточном уровне транскрипция генов определяется присоединением факторов транскрипции — белков-активаторов и белков-репрессоров к регуляторным последовательностям генов. На уровне трансляции считывание многих мРНК также регулируется присоединением белковых факторов, а деградация РНК и белков также проводится специализированными белковыми комплексами. Важнейшую роль в регуляции внутриклеточных процессов играют протеинкиназы — ферменты, которые активируют или подавляют активность других белков путем присоединения к ним фосфатных групп.

  • Слайд 31

    Многие процессы в организме регулируются небольшими белковыми молекулами, полипептидными гормонами и цитокинами. Примером таких белков служит, соответственно, инсулин, который регулирует концентрацию глюкозы в крови, и фактор некроза опухолей, который передаёт сигналы воспаления между клетками организма. На внутриклеточном уровне транскрипция генов определяется присоединением факторов транскрипции — белков-активаторов и белков-репрессоров к регуляторным последовательностям генов. На уровне трансляции считывание многих мРНК также регулируется присоединением белковых факторов, а деградация РНК и белков также проводится специализированными белковыми комплексами. Важнейшую роль в регуляции внутриклеточных процессов играют протеинкиназы — ферменты, которые активируют или подавляют активность других белков путем присоединения к ним фосфатных групп.

  • Слайд 32

    Многие процессы в организме регулируются небольшими белковыми молекулами, полипептидными гормонами и цитокинами. Примером таких белков служит, соответственно, инсулин, который регулирует концентрацию глюкозы в крови, и фактор некроза опухолей, который передаёт сигналы воспаления между клетками организма. На внутриклеточном уровне транскрипция генов определяется присоединением факторов транскрипции — белков-активаторов и белков-репрессоров к регуляторным последовательностям генов. На уровне трансляции считывание многих мРНК также регулируется присоединением белковых факторов, а деградация РНК и белков также проводится специализированными белковыми комплексами. Важнейшую роль в регуляции внутриклеточных процессов играют протеинкиназы — ферменты, которые активируют или подавляют активность других белков путем присоединения к ним фосфатных групп.

  • Слайд 33

    Многие процессы в организме регулируются небольшими белковыми молекулами, полипептидными гормонами и цитокинами. Примером таких белков служит, соответственно, инсулин, который регулирует концентрацию глюкозы в крови, и фактор некроза опухолей, который передаёт сигналы воспаления между клетками организма. На внутриклеточном уровне транскрипция генов определяется присоединением факторов транскрипции — белков-активаторов и белков-репрессоров к регуляторным последовательностям генов. На уровне трансляции считывание многих мРНК также регулируется присоединением белковых факторов, а деградация РНК и белков также проводится специализированными белковыми комплексами. Важнейшую роль в регуляции внутриклеточных процессов играют протеинкиназы — ферменты, которые активируют или подавляют активность других белков путем присоединения к ним фосфатных групп.

Посмотреть все слайды

Сообщить об ошибке