Презентация на тему "Биотехнология игенетическая инженерия"

Презентация: Биотехнология игенетическая инженерия
1 из 69
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
0.0
0 оценок

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Посмотреть и скачать презентацию по теме "Биотехнология игенетическая инженерия" по физике, включающую в себя 69 слайдов. Скачать файл презентации 1.09 Мб. Большой выбор учебных powerpoint презентаций по физике

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    69
  • Слова
    физика
  • Конспект
    Отсутствует

Содержание

  • Презентация: Биотехнология игенетическая инженерия
    Слайд 1

    Биотехнология игенетическая инженерия

  • Слайд 2

    Биотехнология – совокупность методов естественных и инженерных наук, использующих свойства биологических систем различного уровня организации в технологических процессах.

  • Слайд 3

    Генетической инженерией называют прикладную молекулярную и клеточную генетику, разрабатывающую приемы экспериментального вмешательства, позволяющие по заранее намеченному плану перестраивать геном организмов, изменяя содержащуюся в нем наследственную (генетическую) информацию. В понятие генетической инженерии не включают перестройку геномов обычными генетическими методами, т.е. искусственным вызыванием мутаций и получением рекомбинаций путем скрещивания.

  • Слайд 4

    Разделы биотехнологии:

    Генетическая инженерия – технологии основаны на получении гибридных молекул ДНК и введении их в клетки бактерий, растений и животных. Клеточная инженерия – технологии основаны на возможности выращивания тканей и клеток in vitro, слиянии соматических клеток или их протопластов. Биологическая инженерия – технологии основаны на изучении биологических особенностей клеток и внедрении компьютерных методов контроля технологических режимов, позволяющих максимально реализовывать полезные свойства клеток.

  • Слайд 5

    К генетической инженерии принято относить следующие операции:

    1. синтез генов вне организма; 2. выделение из клеток отдельных генов или генетических структур (фрагментов хромосом, целых хромосом или даже целых клеточных ядер); 3. направленную перестройку выделенных структур; 4. копирование и размножение выделенных или синтезированных генов или генетических структур; 5. перенос и включение таких генов или генетических структур в подлежащий изменению геном; 6. экспериментальное соединение разных геномов в одной клетке.

  • Слайд 6
  • Слайд 7

    Ферменты, используемые в генной инженерии.

    Рестриктазы (рестрикционные нуклеазы) – ферменты, способные узнавать специфические последовательности ДНК (4-6 нуклеотидов) и расщепляющие их в строго определённых местах. Ревертаза (РНК-зависимая ДНК-полимераза) – фермент, синтезирующий ДНК по матрице РНК. Нуклеазы – большой класс ферментов, расщепляющих молекулы нуклеиновых кислот; имеются нуклеазы, расщепляющие одно- или двуцепочечные ДНК или РНК путём отщепления по одному нуклеотиду или небольших олигонуклеотидов. Терминальная трансфераза – наращивает на концах фрагментов ДНК однонитевые участки путём последовательного присоединения нуклеотидов; используется для создания на соединяемых фрагментах ДНК «липких» концов.

  • Слайд 8

    Расщепление фрагмента ДНК рестрицирующей эндонуклеазой типа II EcoR1 с образованием липких концов

  • Слайд 9

    Схема действия рестриктазы EcoR 1

  • Слайд 10

    Расщепление фрагмента ДНК рестриктазой типа II Hind II с образованием тупых концов

  • Слайд 11

    Нуклеотидные последовательности, распознаваемые некоторыми ферментами рестрикции

  • Слайд 12

    Отжиг комплементарных липких концов фрагментов, образующихся при расщеплении двух разных образцов ДНК рестрицирующей эндонуклеазой BamH1

  • Слайд 13

    Синтез и выделение фрагментов ДНК

  • Слайд 14

    Схема ферментативного синтеза гена с помощью обратной транскрипции

  • Слайд 15

    Структура химически синтезированного Хораной функционально активного отрезка ДНК кишечной палочки

    Цифры – нумерация нуклеотидов: промотор от -52 до -1 ген супрессорной тирозиновой тРНК от 1 до 125 терминатор от 127 до 146 на концах отрезка тетрануклеотиды ААТТ и ТТАА

  • Слайд 16

    Синтез кДНК

    Синтез кДНК. К препарату очищенной мРНК добавляют праймер oligo(dT). Для синтеза ДНК на РНК-матрице используют фермент обратную транскриптазу и четыре dNTP. In vitro обратная транскриптаза не обеспечивает синтез полноразмерных кДНК-копий на всех матрицах и образует на конце растущей цепи шпильку со свободной 3'-ОН-группой. Эта группа инициирует синтез второй цепи ДНК при участии фрагмента Клёнова. После завершения синтеза молекулы мРНК гидролизуют РНКазойН, а ДНК обрабатывают нуклеазой S1, в результате чего получаются линейные молекулы ДНК с тупыми концами без шпилек.

  • Слайд 17
  • Слайд 18

    Выделение фрагментов ДНК, содержащих нужный ген

  • Слайд 19

    Векторы в генной инженерии.

    Для осуществления трансгеноза (введения чужеродных генов в клетку реципиента) используются вектоы (переносчики). Векторы – это своеобразные молекулярные такси способные самостоятельно проникать в клетку-мишень, встраиваться в ДНК и в ней реплицироваться. В качестве векторов используют ДНК фага или бактериальные плазмиды.

  • Слайд 20

    Генетическая карта плазмидного вектора pBR322

  • Слайд 21

    Генетическая карта плазмидного вектора pUC19

    Плазмида состоит из 2686 пар нуклеотидов и содержит уникальные сайты узнавания для EcoR1, Sac1, Kpn1, Xma1, Sma1, BamH1, Xba1, Sal1, HincII, Acc1, Pst1, BspM1, Sph1 и HindIII, локализованные в полилинкере; ген устойчивости к ампицилину; сайт инициации репликации, функционирующий в E.coli; ген Lac1, контролирующий синтез репрессора, который блокирует транскрипцию гена LacZ в отсутствии индуктора ИПТГ.

  • Слайд 22

    Встраивание чужеродной ДНК в плазмидный вектор

    Плазмидную ДНК, обработанную рестриктазой и щелочной фосфатазой, смешивают с рестрицированной донорной ДНК, содержащей нужный ген, и добавляют ДНК-лигазу. Два из четырёх одноцепочечных разрыва при этом устраняются и конструкция оказывается стабильной благодаря образовавшимся фосфодиэфирным связям. После введения гибридной ДНК в клетку-хозяина происходит её репликация и образуются новые кольцевые молекулы уже без разрывов.

  • Слайд 23

    Ферментативный синтез гена и встраивание его в векторную плазмиду

  • Слайд 24

    Схема получения и клонирования рекомбинантной молекулы

  • Слайд 25

    Интеграция чужеродной ДНК в хромосому хозяина

    Процесс интеграции состоит в следущем: Идентификация подходящего сайта интеграции, т. е. сегмента хозяйской ДНК, последовательность которого может быть прервана без ущерба для функционирования клетки. Выделение и клонирование всего хромосомного сайта интеграции или его части. Встраивание нужного гена вместе с регулируемым промотором в клонированный сайт интеграцииили вблизи него. Перенос полученной генетической конструкции «хромосомный сайт интеграции/клонированный ген» в хозяйскую клетку в составе плазмиды, не способной к автономной репликации в клетках этого хозяина. Отбор и сохранение тех хозяйских клеток, которые экспрессируют клонированный ген. Наследование клонированного гена возможно только в случае его интеграции в хромосому клеток хозяина.

  • Слайд 26

    Два способа интеграции клонированного в плазмиде гена в хромосому в результате двойного (А) и одиночного (Б) кроссинговера

  • Слайд 27

    Встраивание чужеродного гена в заранее выбранный сайт в хромосоме B.subtilis

    1 этап – в хромосомную ДНК хозяйской клетки с помощью гомологичной рекомбинации встраивают маркерный ген 2 этап – маркерный ген замещают геном-мишенью

  • Слайд 28

    «Нокаут» гена с помощью направленной гомологичной рекомбинации. Вектор несет селективный маркерный ген (smg) и фланкирующие его последовательности, гомологичные соответствующим участкам гена-мишени. Последний содержит пять экзонов (1 – 5). В результате гомологичной рекомбинации (штриховые линии) ген-мишень прерывается («нокаутируется»).

  • Слайд 29

    Векторы для клонирования крупных фрагментов ДНК

    Литический путь развития λ. А. При репликации кольцевой ДНК бактериофага λ образуется линейная молекула, состоящая из повторяющихся сегментов длиной примерно 50 т.п.н. Каждый из этих сегментов представляет собой полноразмерную фаговую ДНК. Б. Фаговая головка вмещает один такой сегмент, затем к головке присоединяется уже собранный отросток.

  • Слайд 30

    Клонирующая система на основе бактериофага λ. Фаговая ДНК имеет два BamH1-сайта, фланкирующих её I/E-сегмент. Клонируемую ДНК расщепляют с помощью BamH1, фракционируют полученные фрагменты по размеру и выделяют из них те, которые имеют размер от 15 до 20т.п.н. Фаговую ДНК обрабатывают этим же ферментом. Оба препарата ДНК смешивают и обрабатывают ДНК-лигазой фага Т4. Лигированная смесь содержит самые разные комбинации ДНК, в том числе (1) восстановленную ДНК фага λ и (2) рекомбинантные молекулы, содержащие R- и L-области фаговой ДНК и вставку клонируемой ДНК размером ≈ 20 т.п.н., занявшую место области I/E фагового генома. Рекомбинантные молекулы упаковывают в головки бактерифага λin vitro, и после добавления отростков получают инфекционные фаговые частицы. В инфицированных рекомбинантным фагом клетках E.coli, в хромосому которых интегрирована ДНК бактериофага Р2, могут реплицироваться и образовывать инфекционные частицы только молекулы ДНК, составленные из R- и L-областей фаговой ДНК и клонированной вставки размером ≈ 20 т.п.н.

  • Слайд 31

    Клонирующая система на основе бактериофага λ

  • Слайд 32

    Лигирование липких и тупых концов в молекуле ДНК фагом Т4

    ДНК фага Т4 образует фосфодиэфирные связи между 5‘-фосфатными и 3‘- гидроксильными группами в месте разрыва в остове двухцепочечной ДНК. А – лигирование липких концов В – лигирование тупых концов

  • Слайд 33

    Клонирование с помощью космидного вектора

    Космида имеет точку начала репликации (ori), обеспечивающую её существование в E.coli в виде плазмиды;два интактных соs-конца, разделённых уникальным сайтом для Sca1; BamH1-сайт вбдизи одного из соs-сайтов и ген устойчивости к тетрациклину (Теtr).ДНК, которую хотят клонировать, расщепляют рестриктазой BamH1 и фракционируют по размеру,чтобы выделить молекулы длиной примерно 40 т.п.н. Плазмидную ДНК расщепляют с помощью Sca1 и BamH1. Оба препарата ДНК смешивают и обрабатывают ДНК-лигазой фага Т-4. Некоторые из гибридных молекул, образовавшихся после лигирования, содержат вставку размером около 40 т.п.н., так что их суммарная длина составляет примерно 50 т.п.н. Эти молекулы упаковываются in vitro в головки бактериофага λ, затем к головкам прикрепляются отростки, и образуются инфекционные частицы. При инфицировании этим фагом E.coli в бактериальной клетке оказывается линейная молекула ДНК с cos-концами, которые спариваются друг с другом. ДНК-лигаза клетки-хозяина зашивает одноцепочечные разрывы, и образовавшаяся кольцевая молекула существует в клетке-хозяине как автономно реплицирующаяся единица. Трансформированные клетки можно идентифицировать по признаку устойчивости к тетрациклину.

  • Слайд 34
  • Слайд 35

    Перенос генов с помощью искусственных дрожжевых хромосом

  • Слайд 36

    Идентификация клеток, несущих трансген

  • Слайд 37
  • Слайд 38
  • Слайд 39

    Методы получения трансгенных животных:

    1. Метод микроиньекции 2. Вирусный метод 3. Эмбриональный метод

  • Слайд 40

    Метод микроиньекции

    У самок вызывают гиперовуляцию после чего проводят спаривание с самцами. Из самок-доноров выделяют яйцеклетки.В мужской пронуклеус оплодотворённой яйцеклетки иньецируют трансгенную конструкцию. Яйцеклетки имплантируют «суррогатной» матери, которая производит на свет мышей – основателей трансгенной линии.

  • Слайд 41

    Получение трансгенных мышей методом микроиньекций

    Получение линий трансгенных мышей методом микроинъекций. Яйцеклетки выделяют из самок-доноров, у которых была индуцирована гиперовуляция и проведено спаривание с самцами. Трансгенную конструкцию инъецируют в мужской пронуклеус оплодотворенной яйцеклетки. Яйцеклетки имплантируют в «суррогатную» мать, которая производит на свет трансгенных мышат – основателей трансгенных линий.

  • Слайд 42

    Метод микроинъекций ДНК

    Увеличение числа яйцеклеток, в которых будет инъецирована чужеродная ДНК, путем стимуляции гиперовуляции у самок-доноров. Сначала самкам вводят сыворотку беременной кобылы, а спустя примерно 48 ч — хорионический гонадотропин человека. В результате гиперовуляции образуется примерно 35 яйцеклеток вместо обычных 5—10. Скрещивание с самцами самок с гиперовуляцией и их умерщвление. Вымывание из яйцеводов оплодотворенных яйцеклеток. Микроинъекция ДНК в оплодотворенные яйцеклетки - как правило, сразу после выделения. Часто вводимая трансгенная конструкция находится в линейной форме и не содержит прокариотических векторных последовательностей.

  • Слайд 43

    Вирусный метод

    Эмбрион, находящийся на стадии 8 клеток, инфицируют рекомбинантным ретровирусом, несущим трансген. Самки, которым был имплантирован эмбрион, производят на свет трансгенное потомство. Для идентификации мышей, несущих трансген в клетках зародышевой линии, проводят ряд скрещиваний.

  • Слайд 44

    Получение трансгенных мышей с использованием ретровирусных векторов

    Получение линии трансгенных мышей с использованием ретровирусных векторов. Эмбрион, обычно находящийся на стадии 8 клеток, инфицируют рекомбинантным ретровирусом, несущим трансген. Самки, которым был имплантирован эмбрион («суррогатные» матери), производят на свет трансгенное потомство. Для индетификации мышат, несущих трансген в клетках зародышевой линии, проводят ряд скрещиваний.

  • Слайд 45

    Эмбриональный метод

    Эмбриональные стволовые клетки получают из внутренней клеточной массы бластоцисты мыши. Их трансфицируют вектором, несущим трансген, культивируют. Трансфицированные клетки идентифицируют методом позитивно-негативной селекции (ПЦР). Популяцию трансфицированных клеток вновь культивируют и вводят в бластоцисты, которые затем имплантируют в матку «суррогатной» матери. Скрещивая животных-основателей, несущих трансген в клетках зародышевой линии, можно получить трансгенных мышей.

  • Слайд 46

    Получение трансгенных мышей с помощью генетической модификации эмбриональных стволовых (ES) клеток

    ES-клетки получают из внутренней клеточной массы бластоцисты мыши. Их трансфицируют вектором, несущим трансген, культивируют и идентифицируют трансфицированные клетки методом позитивно-негативной селекции или ПЦР. Популяцию трансфицированных клеток вновь культивируют и вводят в бластоцисты, которые затем имплантируют в матку «суррогатных» матерей. Скрещивая животных-основателей, несущих трансген в клетках зародышевой линии, можно получить линии трансгенных мышей.

  • Слайд 47

    Использование модифицированных эмбриональных стволовых клеток

    Клетки, выделенные из мышиных эмбрионов на стадии бластоцисты, могут пролиферировать в культуре, сохраняя способность к дифференцировке в любые типы клеток, в том числе и в клетки зародышевой линии, при введении в другой эмбрион на стадии бластоцисты. Такие клетки называются плюрипотентными эмбриональными стволовыми клетками (ES). ES-клетки в культуре легко модифицировать методами генной инженерии без нарушения их плюрипотентности. Например, в определенный сайт несущественного гена в их геноме можно встроить функциональный трансген. Затем можно отобрать измененные клетки, культивировать их и использовать для получения трансгенных животных. Это позволяет избежать случайного встраивания, характерного для метода микроинъекций и ретровирусных векторных систем.

  • Слайд 48

    Трансгенные животные

  • Слайд 49

    Стратегия по введению чужеродных генов в клетки млекопитающих состоит в следующем: Клонированный ген вводят в ядро оплодотворенной яйцеклетки. Инокулированные оплодотворенные яйцеклетки имплантируют в реципиентную женскую особь (поскольку успешное завершение развития эмбриона млекопитающих в иных условиях невозможно). Отбирают потомков, развившихся из имплантированных яйцеклеток, которые содержат клонированный ген во всех клетках. Скрещивают животных, которые несут клонированный ген в клетках зародышевой линии, и получают новую генетическую линию.

  • Слайд 50

    Клонирование овцы методом переноса ядра

    Клонирование овцы методом переноса ядра. Ядро яйцеклетки удаляют с помощью микропипетки. Культивируют эпителиальные клетки молочной железы взрослой особи и индуцируют их переход в фазу G0. Осуществляют слияние клеток в G0-фазе и яйцеклеток, лишенных ядра, и выращивают восстановленные яйцеклетки в культуре или в яйцеводе с наложенной лигатурой до ранних стадий эмбриогенеза, а затем имплантируют их в матку «суррогатной» матери, где и происходит дальнейшее развитие. В эксперименте, описанном Уилмутом и др. (1997), было проведено слияние 277 яйцеклеток с удаленными ядрами с клетками молочной железы в фазе G0; из 29 эмбрионов только один развился до жизнеспособного плода.

  • Слайд 51

    Клонирование овечки Долли

  • Слайд 52

    Трансгенный крупный рогатый скот

    Если предполагается использовать молочную железу в качестве «биореактора», то наиболее предпочтительным животным для трансгеноза является крупный рогатый скот, который ежегодно дает до 10 000 л молока, содержащего примерно 35 г белка на 1 л. Если в молоке будет содержаться такое количество рекомбинантного белка и эффективность его очистки составит 50%, то от 20 трансгенных коров можно будет получать примерно 100 кг такого белка в год. По случайному совпадению, именно столько белка С, использующегося для предотвращения тромбообразования, требуется ежегодно. С другой стороны, одной трансгенной коровы будет более чем достаточно для получения требуемого ежегодно количества фактора IX (фактора Кристмаса) каскадного механизма свертывания крови, который вводят больным гемофилией для повышения свертываемости крови.

  • Слайд 53

    Для создания трансгенных коров использовали модифицированную схему трансгеноза мышей методом микроинъекций ДНК. Процедура включала следующие основные этапы: Сбор ооцитов коров, забитых на скотобойне. Созревание ооцитов in vitro. Оплодотворение бычьей спермой in vitro. Центрифугирование оплодотворенных яйцеклеток для концентрирования желтка, который в нормальных яйцеклетках мешает визуализации мужского пронуклеуса с помощью секционного микроскопа. Микроинъекция ДНК в мужской пронуклеус. Развитие эмбрионов in vitro. Нехирургическая имплантация одного эмбриона реципиентной самке во время течки. Скрининг ДНК потомков на наличие трансгена.

  • Слайд 54

    Получение трансгенных коров

  • Слайд 55

    Трансгенные овцы, козы и свиньи

  • Слайд 56

    Трансгенные птицы

    Микроинъекция ДНК в оплодотворенные яйцеклетки птиц с целью получения трансгенных линий - непростая процедура. Это связано с некоторыми особенностями воспроизводства и развития птиц. Так, при оплодотворении у птиц в яйцеклетку могут проникнуть сразу несколько сперматозоидов, а не один, как это обычно бывает у млекопитающих, и идентифицировать тот мужской пронуклеус, который соединится с женским, становится невозможно. Метод микроинъекции ДНК в цитоплазму тоже не подходит, поскольку в этом случае ДНК не интегрируется в геном оплодотворенной яйцеклетки. Наконец, даже если удастся осуществить микроинъекцию ДНК в ядро, дальнейшие операции будет трудно осуществить, поскольку у птиц яйцеклетка после оплодотворения достаточно быстро обволакивается прочной мембраной, покрывается слоем альбумина и внутренней и наружной известковыми оболочками.

  • Слайд 57

    Получение трансгенных цыплят

    Получение трансгенных цыплят трансфекцией изолированных клеток бластодермы. Выделенные клетки трансфицируют трансгеном с помощью липосом и вводят в подзародышевую область облученной бластодермы реципиента. Часть полученных потомков являются химерами, а некоторые из них, несущие трансген в клетках зародышевой линии, при скрещивании могут дать начало трансгенным линиям.

  • Слайд 58

    Трансгенныерыбы

    По мере истощения природных рыбных запасов все большую роль будет приобретать разведение рыбы в искусственных условиях. Основная цель исследований в этой области — создание рекомбинантных рыб путем трансгеноза. До настоящего времени трансгены вводили микроинъекцией ДНК или электропорацией оплодотворенных яйцеклеток различных видов рыб - карпа, зубатки, форели, лосося и т. д. Поскольку у рыб пронуклеус в оплодотворенной яйцеклетке плохо различим в обычный микроскоп, линеаризованную трансгенную ДНК вводят в цитоплазму оплодотворенных яйцеклеток или клеток эмбрионов, достигших стадии четырех бластомеров. Эмбриогенез у рыб протекает в водной среде вне организма, поэтому в имплантации нет необходимости. Все дальнейшие процессы могут протекать в резервуарах с регулируемой температурой. Выживаемость эмбрионов рыб после микроинъекций довольно высока, от 35 до 80%, а доля трансгенных потомков колеблется от 10 до 70%. Трансген можно обнаружить с помощью ПЦР с использованием либо препаратов эритроцитов зародышей, либо суммарной ДНК. Скрещивая трансгенных рыб, можно вывести трансгенные линии.

  • Слайд 59

    Трансгенные мыши: методология

    Введение чужеродной ДНК мышам можно осуществить разными методами: С помощью ретровирусных векторов, инфицирующих клетки эмбриона на ранних стадиях развития перед имплантацией эмбриона в самку-реципиента; Микроинъекцией в увеличенное ядро спермия (мужской пронуклеус) оплодотворенной яйцеклетки; Введением генетически модифицированных эмбриональных стволовых клеток в предимпланированный эмбрион на ранних стадиях развития.

  • Слайд 60

    Трансгенные мыши: применение как модельного обьекта изучения болезни Альцгеймера.

    Болезнь Альцгеймера — это дегенеративный процесс, приводящий к утрате клеток различных отделов головного мозга. Наиболее ранним проявлением служит ухудшение памяти. Этот процесс прогрессирует, к нему присоединяются утрата способности к абстрактному мышлению, изменение личности, нарушения речи, снижение физического статуса. Патология наблюдается у 1% людей возрастной группы от 60 до 65 лет и у 30% людей старше 80 лет. При патоморфологическом исследовании в теле нейронов обнаруживаются нейрофибриллярные клубочки, а у синалтических окончаний - плотные агрегаты, называемые сенильными бляшками. Кроме того, в кровеносных сосудах мозга обнаруживаются конгломераты - амилоидные бляшки.

  • Слайд 61

    Схематическое изображение нейрона коры головного мозга человека с указанием некоторых гистологических особенностей, характерных для болезни Альцгеймера. У синапсов образуются сенильные бляшки, содержащие амилоидные скопления и обломки клеток. В теле нейрона накапливаются нейрофибриллы, включающие агрегаты из белков цитоскелета и других белков. Происходят и другие изменения, здесь не показанные.

  • Слайд 62

    Основным компонентом сенильных и амилоидных бляшек является белок Ар (амилоид р\ р-белок, р-амилоидный белок, (3/А4) мол. массой 4 кДа. Существуют Ар-белки с разным числом аминокислотных остатков, например Ар40 и Ар42. Все они образуются в результате протеолитического расщепления белка-предшественника (АРР). Причины аккумуляции Ар-белка не установлены. Члены некоторых семей, в которых с высокой частотой встречается болезнь Альцгеймера, несут мутации в гене АРР, что наводит на мысль об участии этого гена в возникновении данной патологии. К сожалению, проследить в деталях за возникновением и развитием болезни Альцгеймера на человеке не удается. Неоценимую помощь в этом могла бы оказать какая-нибудь «животная» модель.

  • Слайд 63

    Моделирование развития болезни Альцгеймера

  • Слайд 64

    Муковисцидоз — распространенная генетическая болезнь, поражающая в странах Европы одного из 2500 новорожденных. Первичный эффект дефектного CF-гена — это изменение функции CFTR, который в норме служит каналом для ионов хлора. В результате блокирования потока этих ионов в клетку и из клетки в протоках некоторых органов, особенно в легких и поджелудочной железе, скапливается слизь. Она становится источником бактериальной инфекции, которая с трудом поддается лечению антибиотиками. ДНК, высвобождающаяся из лизировавших бактерий, делает слизь очень густой. Загустевшая слизь забивает протоки, нарушается нормальная работа органа и симптомы муковисцидоза еще более усиливаются. Продолжительность жизни больных муковисцидозом составляет в настоящее время 25—30 лет.

  • Слайд 65
  • Слайд 66

    Гибридизация соматических клеток

  • Слайд 67

    Методика изоляции соматических гибридов (по Шапиро)

    ТК – фермент тимидинкиназа ГГФРТ – фермент гипоксантин-гуанин-фосфорибозилтрансфераза На селективной среде могут размножаться гибридные клетки, способные вырабатывать оба фермента одновременно

  • Слайд 68

    Некоторые сочетания геномов, полученные слиянием соматических клеток

  • Слайд 69

    Благодарю за внимание!

Посмотреть все слайды

Сообщить об ошибке