Презентация на тему "Катализаторы гидрогенизационных процессов"

Презентация: Катализаторы гидрогенизационных процессов
Включить эффекты
1 из 12
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
3.3
2 оценки

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Презентация для студентов на тему "Катализаторы гидрогенизационных процессов" по химии. Состоит из 12 слайдов. Размер файла 0.43 Мб. Каталог презентаций в формате powerpoint. Можно бесплатно скачать материал к себе на компьютер или смотреть его онлайн с анимацией.

Содержание

  • Презентация: Катализаторы гидрогенизационных процессов
    Слайд 1

    Катализаторы гидрогенизационных процессов

    Введение Гидрогенизационные процессы относятся к каталитическим процессам. Однако их отличи-тельной особенностью является осуществление каталитических превращений в присутствии водорода или водородсодержащего газа. К гидрогенизационным обычно относят следующие процессы: гидрокрекинг, гидрирование, гидродеароматизацию, гидродепарафинизацию и гидроочистку нефтяных фракций. Риформинг и изомеризацию бензиновых фракций, как правило, рассматривают отдельно, так как они имеют существенные отличия от процессов, перечисленных ранее. Четкой границы между гидрогенизационными процессами провести нельзя вследствие протекания не одной, а целой группы реакций. Для каждого процесса путем изменения природы сырья, технологических условий и катализатора обеспечивают предпочтительное протекание той или иной группы реакций. Поэтому очень часто для обозначения процесса вводят такие названия как гидрооблагораживание, гидроконверсия и т.п. К примеру, чем отличается процесс легкого гидрокрекинга вакуумного газойля от глубокой гидроочистки дизельного топлива. Только глубиной превращения сырья, которая достигается изменением состава катализатора и некоторым ужесточением технологического режима.

  • Слайд 2

    Катализаторы гидроочистки. Наиболее распространенными гидрогенизационным процессом является гидроочистка или гидрообессеривание различных нефтяных фракций (от углеводородных газов и легких бензиновых до остаточных фракций). Катализаторы гидроочистки широко распространены в основном в виде алюмокобольтмолибденовых АКМ и алюмоникельмолибденовых АНМ. В качестве носителя (матрицы) чаще всего используется активный оксид алюминия. Для различных видов сырья выбирается оптимальное количество оксидов никеля, молибдена и кобальта, вид и количество промотирующей добавки, а так же другие способы активации и модификации. Оксиды никеля, молибдена и кобальта, как правило, сульфидируют (переводят в сульфидную форму).

  • Слайд 3

    Испытания катализаторов на ОАО Славнефть Ярославнефтеоргсинтез показали их раз-личную гидрообессеривающую активность. Результаты испытаний фиксировались при температурах 340, 360 и 380°С, а также объёмной скорости 3 и 4 ч-1. Следует отметить, что при температурах 360 и 380°С и объёмной скорости 3 ч-1 все катализаторы позволяли получить дизельное топливо с содержанием серы менее 0,05% мас., однако при увеличении объёмной скорости до 4 ч-1 и снижении температуры до 340°С наблюдалась заметная разница в активности испытанных катализаторов.

  • Слайд 4

    Катализаторы гидрирования - вещества, ускоряющие присоединение водорода к ненасыщенным органическим соединениям. К катализаторам гомогенного гидрирования относятся растворимые комплексные соединения на основе платиновых (Pt, Ru, Rh, Ir) и др. переходных металлов, например, RuCl2(PPh3)3, RhCl(PPh3)3 (катализатор Уилкинсона), [CoH(CN)5]3- и др. Их наиболее часто используют для гидрирования олефинов, ацетиленов, кетонов; они обладают высокой селективностью. Катализаторы гетерогенного гидрирования - обычно многокомпонентные каталити-ческие системы на основе платиновых и др. переходных металлов, а также их оксидов или сульфидов. Получение. Нанесенные оксидные К. г., применяемые обычно для гидрирования в газовой фазе, получают осаждением гидроксидов металлов из растворов их солей на пористый носитель или пропиткой последнего раствором соли активного компонента, затем следует сушка и восстановление. Пористые К., применяемые обычно для гидрирования в жидкой фазе, готовят выщелачиванием сплавов, содержащих активный в реакции гидрирования металл, например, Ni, Co, Fe, Cu, Pt, Re. Применение. Hаибольшее распространение такие К. г. получили в нефтепере-рабатывающей промышленности в процессах гидроочистки и гидрообессеривания нефтяных фракций и остатков, гидрокрекинга, каталитического риформинга. Для промышленного гидрирования растительных масел и животных жиров используют обычно никельсодержащие катализаторы, промотированные Сu, Ti, Zr и Mo, при деструктивной гидрогенизации угля - некоторые соединения Sn, MoS2, WS2 и WS2-NiS-Al2O3, обладающие высокой каталитической активностью. При гидрированииароматических соединений в качестве катализаторов используют Ni, Pd или Pt. Гидрированиебензола в присутствии Ni или Pt обычно проводят в стационарном слое катализатора при температурах от 65 до 250°С, давлении 0,5-3,5 МПа; селективность катализаторов около 95%. Для гидрированияфурана в ТГФ используют Ni. Os или Pd на оксидных носителях (Al2О3, алюмосиликат, кизельгур); процесс проводят при 80-140°С, давлении 0,5-1,5 МПа; селективность катализаторов около 75%.

  • Слайд 5
  • Слайд 6
  • Слайд 7

    Катализаторы гидрокрекинга. В промышленности получили распространение ката-лизаторы гидрокрекинга двух типов: аморфные и цеолитсодержащие. Выход целевых продуктов на цеолитсодержащих катализаторах гидрокрекинга выше, чем на аморфных, поэтому они считаются более перспективными. В качестве гидрирующих металлов они содержат никель, кобальт, молибден. Для усиления расщепляющей активности в катализаторы вводят аморфный алюмосиликат или цеолитсодержащий компонент. Расщепляющие и гидрирующие свойства катализаторов регулируют варьированием количества и природой соответствующих компонентов.

  • Слайд 8

    Принципиальная технологическая схема установки гидрокрекинга высокого давления

  • Слайд 9

    Катализаторы гидродепарафинизации - основная цель процесса гидродепара-финизации - получение нефтепродуктов с заданными вязкостными и низкотем-пературными свойствами за счет перевода н-алканов в изоалканы. В основе этих катализаторов лежит СВК цеолит ZSM -5. В этих цеолитах модуль (Si/Al) может изменяться от 150 до 500 и выше. Регулирование свойств катализаторов гидро-депарафинизации возможно изменением соотношения реагентов и введением поливалентных металлов, таких как кальций, барий, никель, кобальт, церий, платина, палладий и др. На основе СВК цеолитов в России разработаны такие промышленные катализаторы, как СГК-1М, БФК, КДМ-1, не уступающие лучшим зарубежным аналогам. Характеристики: - диаметр экструдатов - 2-3 мм - насыпная плотность – 650-750 кг/м3 - механическая прочность – не менее 2,0 кг/мм

  • Слайд 10

    Катализаторы гидродеароматизации дизельного топлива были испытаны в лабора-торных и полупромышленных условиях, Испытания проводили с использованием в качестве сырья прямогонного дистиллята с 36 % серы и 1.7 % ароматических соеди-нений. На цеолитовых носителях можно получать катализаторы, гидрирующие ароматические углеводороды при содержании, серы в сырье 0 5 % (масс.) и более. По данным Е. Д. Радченко, в настоящее время разработаны сероустойчивые композиции катализаторов гидрирования ароматических углеводородов при помощи более или менее эффектив-ных методов синтеза. В ближайшие годы следует ожидать дальнейшего прогресса в этой области и появления новых, более эффективных методов модифицирования поверхности носителей с целью усиления их электроноакцепторных свойств.

  • Слайд 11

    Модифицирование катализаторов. С целью улучшения термической стабильности, механической прочности, регулирования пористости и каталитической активности в носитель вводятся активирующие добавки: оксид кремния в количестве 5-20%, фосфорную кислоту до 3%, диоксид титана 1-10%, оксид бария 3-10%, оксид циркония и др. Каталитическая активность алюмомолибденовой системы также меняется экстремально при введении в нее различного количества таких металлов, как марганец и цинк. Различное соотношение активных компонентов кобальта и молибдена, никеля и молибдена оказывает значительное влияние на активность катализатора. Для различного по фракционному составу сырья необходимо различное соотношение активных компонентов, уже не говоря о различных гидрогенизационных процессах. Оптимальное содержание молибдена, никеля или кобальта определяется по экстремальным зависимостям свойств данных катализаторов от их состава. Для активирования катализаторов АКМ и АНМ проводится предварительное сульфидирование. Сульфидирование - это оказание внешнего воздействия на поверхность катализатора, в результате чего происходит изменение фазового состава катализатора: оксиды молибдена приобретают структуру отличную от слоистой структуры сульфида молибдена, что делает необходимым подбор оптимального соотношения этих структур. Это достигается введением определенного количества серы в катализатор. В промышленных условиях сульфидирование проводится чаще всего в токе водорода с содержанием 3-10% сероводорода. Полное сульфидирование достигается при температуре 400-4500С. Осернение также можно проводить сернистым сырьем и сырьем с добавлением свободной серы или другого осерняющего агента. Содержание серы в катализаторе может достигать 5-7%. Введение цеолита в АКМ и АНМ катализаторы оказывает большое влияние на их структурные и физико-химические свойства. В промышленных катализаторах в основном применяют декатионированный цеолит типа У с введенным в него ионами РЗЭ, никеля или кальция. Добавка цеолита У оказывает существенное влияние на формирование оксидных соединений никеля, молибдена и алюминия, на дисперсность и количество металлического никеля, увеличивает каталитическую активность всего катализатора.

  • Слайд 12

    Активность катализатора. Чем выше активность катализатора, тем с более высокой объемной скоростью можно проводить процесс и достигать большей глубины превращения сырья. Пpичины потеpи активности катализаторов, а следовательно и уменьшения глубины гидроочистки и гидрокрекинга, могут быть следующие: повышение температуры – стремление увеличить скорость pеакции повышением температуры может привести к нежелательным реакциям, протекание которых трудно контролировать, в результате чего катализатор дезактивируется, пpи этом снижается выход целевых продуктов за счет образования кокса и газа; изменение состава катализатора – например, пpи 760°С оксид никеля на активном оксиде алюминия превращается в неактивный алюминат никеля, происходит спекание катализатора с уменьшением поверхности его пористой структуры; потеря активного компонента катализатора – пpи темпеpатуpе около 600°С испаряется тpехоксид молибдена; недостаточная скорость десорбции образующихся продуктов с поверхности ката-лизатора пpи малом парциальном давлении водоpода. Дезактивация. Потеря каталитической активности вызывается несколькими причинами. При нормальном режиме работы дезактивация катализатора происходит непрерывно и постепенно в течение всего цикла работы за счет коксообразования, однако существует несколько моментов, объясняющих высокие скорости дезактивации.

Посмотреть все слайды

Сообщить об ошибке